一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

17二元一次方程組及其解法

 龍溪二十 2011-03-29
二元一次方程組及其解法
          撰稿:范興亞    審稿:董萍    責(zé)編:孫景艷
教學(xué)目標(biāo):
  了解二元一次方程(組)及解的定義,熟練掌握用代入法和加減法解二元一次方程組的方法并能靈活運(yùn)用。

重點(diǎn)、難點(diǎn):
  1.二元一次方程(組)及解的應(yīng)用
    注意:方程(組)的解適合于方程,任何一個(gè)二元一次方程都有無(wú)數(shù)個(gè)解,有時(shí)考查其整數(shù)解的情
       況,還經(jīng)常應(yīng)用方程組的概念巧求代數(shù)式的值。
  2.解二元一次方程組
    解方程組的基本思想是消元,常用方法是代入消元和加減消元,轉(zhuǎn)化思想和整體思想也是本章重點(diǎn).

教學(xué)內(nèi)容解析:
一、二元一次方程組的有關(guān)概念復(fù)習(xí):
  1. 二元一次方程
    含有 兩個(gè) 未知數(shù),并且未知數(shù)的 項(xiàng) 的次數(shù)都是 一次,這樣的方程叫做二元一次方程.
  2. 二元一次方程組
    由個(gè)次方程組成,并且含有個(gè)未知數(shù)的方程組叫做二元一次方程組.
    在初中只研究由兩個(gè)二元一次方程組成的二元一次方程組,它的一般形式是
    (其中是不全為零)
  3.方程組的解
    方程組里 各個(gè) 方程的 公共 解叫做這個(gè)方程組的解.
  4.解方程組
    求方程組的或判斷該方程組 無(wú)解 的過(guò)程叫做解方程組.

  【例1】 已知方程.
 ?、艑?xiě)出用表示的式子; ⑵寫(xiě)出方程的4個(gè)解來(lái).
  解:⑴原方程可化為:,移項(xiàng),得:,
     所以. ①
   ?、圃冖僦蟹謩e給一些數(shù)值,就可以求出的對(duì)應(yīng)值,把它們放在一起就是原方程的一個(gè)解.
     于是可以求出原方程的4個(gè)解為:
     ;;;.
  說(shuō)明:①原方程去括號(hào)時(shí),要乘以括號(hào)中的每一項(xiàng);②移項(xiàng)時(shí)要注意改變符號(hào);③第⑵小題的解有無(wú)數(shù)對(duì).

  【例2】 選擇題:
 ?、畔铝蟹匠讨?二元一次方程是( )
  A.    B.    C.    D.

  ⑵下列六個(gè)方程組中,是二元一次方程組的有( )
  ?、?img doc360img-src='http://image25.360doc.com/DownloadImg/2011/03/2916/10455326_18.gif' align=absMiddle src="http://pubimage.360doc.com/wz/default.gif" width=101 height=69>  ?、?img doc360img-src='http://image25.360doc.com/DownloadImg/2011/03/2916/10455326_19.gif' align=absMiddle src="http://pubimage.360doc.com/wz/default.gif" width=85 height=48>    ③
  ?、?img doc360img-src='http://image25.360doc.com/DownloadImg/2011/03/2916/10455326_21.gif' align=absMiddle src="http://pubimage.360doc.com/wz/default.gif" width=85 height=48>   ?、?img doc360img-src='http://image25.360doc.com/DownloadImg/2011/03/2916/10455326_22.gif' align=absMiddle src="http://pubimage.360doc.com/wz/default.gif" width=47 height=48>       ⑥
  A.1個(gè)    B.2個(gè)    C.3個(gè)    D.4個(gè)

  ⑶下列各組數(shù)中①是方程的解的有( )
  A.1個(gè)    B.2個(gè)    C.3個(gè)    D.4個(gè)
  解:⑴在B中,項(xiàng)是二次的,不是一次,應(yīng)排除;
     在C中, 項(xiàng)是二次的,不是一次,應(yīng)排除;
     在D中,只有一個(gè)未知數(shù),少另一個(gè)未知數(shù),不是二元,應(yīng)排除;
     而A確是二元一次方程,故應(yīng)選A.
   ?、脾俨皇钦椒匠?故不是二元一次方程組;②中求知數(shù)的項(xiàng)的次數(shù)出現(xiàn)了2次,故也不是二元一次方
     程組;③中一共出現(xiàn)了3個(gè)未知數(shù),故也不是二元一次方程組;④、⑤、⑥均是二元一次方程組.
     故應(yīng)選擇C項(xiàng).
   ?、前癣俅敕匠?左邊=,右邊=10.
     因?yàn)樽筮?右邊,所以①是方程的解.
     同理可知④也是方程的解,而②和③不滿足方程.故應(yīng)選擇B項(xiàng).
  說(shuō)明:
 ?、甯鶕?jù)下列兩條來(lái)判斷一個(gè)方程是不是二元一次方程:①方程中是否只含有兩個(gè)未知數(shù);②未知項(xiàng)的次數(shù)
   是否為1.
  ㈡判斷方程組是否是二元一次方程組,按照其定義看方程組中的方程是不是整式方程,是否一共只有兩個(gè)
   未知數(shù),且未知項(xiàng)的次數(shù)是否為1.
 ?、缗袛嘁唤M數(shù)是不是二元一次方程的解,只要把這一組數(shù)代入方程左右兩邊,若能使兩邊相等,則是方程
   的解,若兩邊不相等,則不是方程的解.

  【例3】下列每個(gè)方程組后的一對(duì)數(shù)值是不是這個(gè)方程組的解?
 ?、?img doc360img-src='http://image25.360doc.com/DownloadImg/2011/03/2916/10455326_32.gif' align=absMiddle src="http://pubimage.360doc.com/wz/default.gif" width=91 height=48>,
  ⑵ ,
  解:⑴因?yàn)?img doc360img-src='http://image25.360doc.com/DownloadImg/2011/03/2916/10455326_36.gif' align=absMiddle src="http://pubimage.360doc.com/wz/default.gif" width=184 height=21>,所以是方程組的解.
   ?、埔?yàn)?img doc360img-src='http://image25.360doc.com/DownloadImg/2011/03/2916/10455326_37.gif' align=absMiddle src="http://pubimage.360doc.com/wz/default.gif" width=227 height=23>,所以不是的解.
  說(shuō)明:判斷一對(duì)數(shù)是不是方程組的解,按照定義只需看它是不是方程組中每一個(gè)方程的解.具體方法是把這一對(duì)數(shù)值代入方程組中進(jìn)行檢驗(yàn),只要不是其中一個(gè)方程的解,那么它就不是方程組的解.

二、二元一次方程組的解法
1. 解二元一次方程組的基本思想是
  

2. 解二元一次方程組的基本方法
  (1) 代入消元法:
  【例1】用代入法解方程組
     
  解:把①代入②,得
    
    所以
    把代人①,得.
    所以

  【例2】(為例1的變式)解方程組
     
  分析:
  (1)從方程的結(jié)構(gòu)來(lái)看:例2與例1有什么不同?
    例1是用直接代人②的.而例2的兩個(gè)方程都不具備這樣的條件都不能直接代入另一條方程
  (2)如何變形?
    把一個(gè)方程變形為用含的式子表示(或含的式子表示).
  (3)那么選用哪個(gè)方程變形較簡(jiǎn)便呢?
    通過(guò)觀察,發(fā)現(xiàn)方程①中的系數(shù)為-1,因此,可先將方程①變形,用含的代數(shù)式表示,再代
    入方程②求解.
  解:由①得, ③ ,
    把③代人②,得(問(wèn):能否代入①中?)
    ,
    所以,
    .
   ?。▎?wèn):本題解完了嗎?把代入哪個(gè)方程求較簡(jiǎn)單?)
    把代入③,得
    
    所以
    所以

  (2) 加減消元法:
  【例3】解方程組
  解法一:由①得: 代人方程②,消去.
  解法二:把看作一個(gè)整體,由①得,代入方程②,消去.
      肯定兩解法均正確,并比較兩種方法的優(yōu)劣.解法二整體代入更簡(jiǎn)便,準(zhǔn)確率更高.
      有沒(méi)有更簡(jiǎn)潔的解法呢?教師可做以下啟發(fā):
  問(wèn)題1.觀察上述方程組,未知數(shù)x的系數(shù)有什么點(diǎn)?(相等)
  問(wèn)題2.除了代入消元,你還有別的辦法消去嗎?
 ?。▋蓚€(gè)方程的兩邊分別對(duì)應(yīng)相減,就可消去x,得到一個(gè)一元一次方程.)
  解法三:①-②得:,所以
      代人①或②,得到
      所以原方程組的解為

  [變式一]:
  啟發(fā):
  問(wèn)題1.觀察上述方程組,未知數(shù)的系數(shù)有什么特點(diǎn)?(互為相反數(shù))
  問(wèn)題2.除了代入消元,你還有別的辦法消去嗎?
 ?。▋蓚€(gè)方程的兩邊分別對(duì)應(yīng)相加,就可消去,得到一個(gè)一元一次方程.)
  解后反思:從上面的解答過(guò)程來(lái)看,對(duì)某些二元一次方程組可通過(guò)兩個(gè)方程兩邊分別相加或相減,消去其中一個(gè)未知數(shù),得到一個(gè)一元一次方程,從而求出它的解.這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法.
  想一想:能用加減消元法解二元一次方程組的前提是什么?
  兩個(gè)二元一次方程中同一未知數(shù)的系數(shù)相反或相等.
  [變式二]:
  觀察:本例可以用加減消元法來(lái)做嗎?
  必要時(shí)作啟發(fā)引導(dǎo):
  問(wèn)題1.這兩個(gè)方程直接相加減能消去未知數(shù)嗎?為什么?
  問(wèn)題2.那么怎樣使方程組中某一未知數(shù)系數(shù)的絕對(duì)值相等呢?
  仔細(xì)觀察方程組的結(jié)構(gòu)特點(diǎn),發(fā)現(xiàn)的系數(shù)成整數(shù)倍數(shù)關(guān)系.
  因此:②×2,得
  由①-③即可消去,從而使問(wèn)題得解.
 ?。ㄗ穯?wèn):③-①可以嗎?怎樣更好?)
  [變式三]:
  想一想:本例題可以用加減消元法來(lái)做嗎?
  怎樣變形才能使方程組中某一未知數(shù)系數(shù)的絕對(duì)值相等呢?
  分析得出解題方法:
  解法1:通過(guò)由①×3,②×2,使關(guān)于的系數(shù)絕對(duì)值相等,從而可用加減法解得.
  解法2:通過(guò)由①×5,②×3,使關(guān)于的系數(shù)絕對(duì)值相等,從而可用加減法解得.
  怎樣更好呢?
  通過(guò)對(duì)比,總結(jié)出應(yīng)選擇方程組中同一未知數(shù)系數(shù)絕對(duì)值的最小公倍數(shù)較小的未知數(shù)消元.
  解后反思:用加減法解同一個(gè)未知數(shù)的系數(shù)絕對(duì)值不相等,且不成整數(shù)倍的二元一次方程組時(shí),把一個(gè)(或兩個(gè))方程的兩邊乘以適當(dāng)?shù)臄?shù),使兩個(gè)方程中某一未知數(shù)的系數(shù)絕對(duì)值相等,從而化為第一類(lèi)型方程組求解.
  從例1、例2、例3可知,只要方程組中未知數(shù)的系數(shù)及常數(shù)項(xiàng)一旦確定,那么它的解也就隨著確定了,這就使我們思考一個(gè)問(wèn)題:二元一次方程組的解與這六個(gè)系數(shù)之間有什么樣的關(guān)系?如果找到這個(gè)關(guān)系,我們就可不再?gòu)念^一步一步地解,可直接利用這個(gè)關(guān)系得到方程組的解.
  解:
    若先消去y,
    得:
    得:
    ③+④得:
    當(dāng)時(shí),.
    若消去,
    得:
    得:
    ⑤+⑥得:
    當(dāng)時(shí),.
    ∴ 當(dāng)時(shí),原方程組的解為
    這就是我們所要得到的結(jié)果.

  練習(xí):用上面的結(jié)果解方程組
  解:
    
    ∴ 原方程組的解為

  【例4】已知關(guān)于的方程組的解相同,求的值. 分析:既然兩個(gè)方程組的解相同,那么兩個(gè)方程組的解也應(yīng)與方程組的解相同,將此方程組的解代入含有、的另兩個(gè)方程,則解關(guān)于、的二元一次方程組,從而求出、的值.
  解:求得方程組的解為,將其代入可得:
    
    ,得: ,
    將 代入①得, 所以

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類(lèi)似文章 更多

    老司机精品福利视频在线播放| 国产精品亚洲一级av第二区| 伊人久久青草地婷婷综合| 99国产精品国产精品九九| 亚洲视频一区自拍偷拍另类| 日本欧美在线一区二区三区| 日韩中文字幕有码午夜美女| 国产精品免费视频久久| 亚洲中文字幕在线乱码av| 亚洲中文字幕三区四区| 激情丁香激情五月婷婷| 亚洲男人的天堂久久a| 空之色水之色在线播放| 中文字幕久热精品视频在线| 日本在线不卡高清欧美| 欧洲日韩精品一区二区三区| 国产成人亚洲欧美二区综| 熟女体下毛荫荫黑森林自拍| 欧美日韩国产黑人一区| 91亚洲国产日韩在线| 91免费一区二区三区| 日本欧美一区二区三区就| 人人妻人人澡人人夜夜| 亚洲一区二区三区在线免费 | 亚洲人午夜精品射精日韩| 精品亚洲av一区二区三区| 国产91色综合久久高清| 中文字幕日韩欧美亚洲午夜| 一区二区欧美另类稀缺| 中文字幕一区久久综合| 久久精视频免费视频观看| 国产亚洲精品久久99| 欧美日韩精品一区免费| 国产成人精品视频一区二区三区 | 欧美一级特黄特色大色大片| 久热香蕉精品视频在线播放| 久草精品视频精品视频精品| 中文字幕日韩欧美理伦片| 国产一区欧美午夜福利| 特黄大片性高水多欧美一级| 国产高清在线不卡一区|