一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

張益唐最新突破使人們接近解決由歐拉和高斯提出的“方便數(shù)猜想”

 taotao_2016 2022-11-10 發(fā)布于北京
文章圖片1

原標題:《張益唐的最新突破,使得人們接近于解決由歐拉和高斯提出的“方便數(shù)猜想”》

傳奇數(shù)學家張益唐近日公布了他關于朗道-西格爾零點猜想的論文,在11月5日山東大學的在線講座中介紹了這一工作,并于11月8日在北京大學做線上學術報告。
張益唐這一成果的意義十分重大,如果證明無誤的話,將是解析數(shù)論領域里程碑式的工作。我們在《千呼萬喚始出來,張益唐公布證明朗道-西格爾零點猜想的論文》一文中,試圖從外行的角度解讀張益唐的工作。山東大學的解析數(shù)論專家在《張益唐教授談朗道-西格爾零點猜想研究的新突破》一文中也進行了專業(yè)解讀。
在我們前面發(fā)表的文章中,對張益唐工作的解讀可以總結如下:朗道-西格爾零點猜想是廣義黎曼假設的一個重要的特殊情況,但跟黎曼假設沒有直接關系。張益唐證明了朗道-西格爾零點猜想的一個變形。這一成果在解析數(shù)論中的意義,比張益唐之前在孿生素數(shù)猜想上的突破還要重大。
許多讀者非常關心的一個問題是,如果張益唐的論文正確的話,他到底有沒有證明朗道-西格爾零點猜想?對此,筆者的看法是,這不重要。數(shù)論是一門研究整數(shù)性質(zhì)的數(shù)學分支。朗道-西格爾零點猜想本身并不是數(shù)論問題,而是一個復變函數(shù)問題,是對狄利克雷L函數(shù)可能的零點的大小的估計。數(shù)論學家們之所以會關心這個問題,是為了它在數(shù)論中的廣泛應用。
在研究一類解析數(shù)論問題時,如果狄利克雷L函數(shù)的一個零點非常接近1,對于證明就會有很大影響。朗道-西格爾零點猜想的本質(zhì)就是說L函數(shù)的實零點距離1不那么近。具體在量化距離遠近的時候,朗道-西格爾采用的標準是

文章圖片2

,

猜想和1之間的距離小于這個數(shù)的實零點(即西格爾零點)不存在。那么現(xiàn)在張益唐就相當于用另外一種方式來量化這個距離,他宣稱和1之間的距離小于

文章圖片3

的實零點不存在。這個結論比原來版本的朗道-西格爾零點猜想要弱,但對于數(shù)論中的應用已經(jīng)足夠了。即便以后有人能解決原來版本的朗道-西格爾零點猜想,也不會給數(shù)論學家?guī)砀鄬嵸|(zhì)上的幫助。
從這個角度來說,認為張益唐解決了朗道-西格爾零點猜想也未嘗不可。我們之所以說張益唐證明了朗道-西格爾零點猜想的一個“變形”(variant),就是因為這一說法比說他證明了該猜想的“弱版本”更能準確地反映這一成果的意義。
在張益唐新公布的論文第一章中,他宣布了兩個定理,分別是對于L(1,χ)的估計

文章圖片4

以及對西格爾零點的估計:可能存在的西格爾零點不大于

文章圖片5

.

其中c1和c2都是跟D無關的,可以計算出來的正實數(shù)。

“可以計算出來的”意思就是可以順著證明過程,一步一步地把這個常數(shù)因子具體算出來。有的定理只會告訴你存在這么一個常數(shù),但是你沒法根據(jù)證明過程算出這個常數(shù)到底是多少。對于朗道-西格爾猜想的數(shù)論應用來說,知道這個常數(shù)的具體數(shù)值是非常關鍵的。

上面的指數(shù)-2022和-2024都是可以改進的數(shù)字,就像他的孿生素數(shù)猜想論文中的七千萬一樣,只是為了計算方便而選取出來的。當然選取成目前的數(shù)字,明顯是在致敬今年的年份。

當年在張益唐的孿生素數(shù)猜想論文發(fā)表后,數(shù)論專家們發(fā)起了一個Polymath項目,將張益唐文中的七千萬最終改進為246. 如果張益唐現(xiàn)在的工作得到證實,可以想象同樣會有很多專家來改進他的估計。這里的改進有兩方面,一方面是要具體算出兩個常數(shù)c1和c2的值,另一方面是改進其中的指數(shù),爭取把2022和2024縮小。比起孿生素數(shù)猜想的情形,這些改進的意義要大得多,因為要想把張益唐的工作應用到數(shù)論問題中,肯定是所得到的估計越強越好。
在國外reddit、mathoverflow等網(wǎng)站上,許多網(wǎng)友對張益唐的工作發(fā)表了評論。一位網(wǎng)友說:“我確信他為了能在2023年之前把論文寫出來而爭分奪秒地工作。”下面回復:“哦,張益唐和他有趣的常數(shù)。如果這篇文章正確,大家會很興奮地看到另外一個改進常數(shù)的狂熱polymath項目?!?/span>

文章圖片6


此外還有別的一些犀利吐槽:“如果這篇論文不能在今年底之前發(fā)表,我會很不爽?!薄叭绻ぷ鞯酶?,就能在去年寫出這篇文章,得到一個更好的指數(shù)-2021?!薄巴话l(fā)新聞:Polymath項目為了改進張益唐的指數(shù)而發(fā)明時間機器。”

文章圖片7


不過,也有一些網(wǎng)友發(fā)表了專業(yè)性的評論。其中,最引人注目的一個評論是一位叫Stopple的網(wǎng)友發(fā)表的。如果讀者近期關注張益唐的相關新聞,可能對這個名字不感陌生。此君就是張益唐的同事,解析數(shù)論專家Jeffrey Stopple。他曾說:“如果張益唐能夠證明朗道-西格爾零點猜想,就相當于一個人被閃電擊中兩次。”這句話最近被新聞廣泛引用,以說明張益唐的工作是多么令人震驚。
Stopple指出,張益唐的成果能夠用來研究歐拉和高斯遺留下來的一個關于“方便數(shù)”(idoneal number)的問題,把它化為有限次計算。這一問題在文獻中并沒有公認的名字,我們姑且稱之為“方便數(shù)猜想”。在張益唐的工作之后,這一猜想或許很快就會成為定理。
那么,這是一個什么樣的猜想呢?(以下關于方便數(shù)猜想的介紹主要參考了Günther Frei和Ernst Kani的綜述文章。)

要介紹“方便數(shù)猜想”,需要追溯到17世紀的法國數(shù)學家費馬。費馬考慮過這樣一個問題:哪些自然數(shù)可以表示成兩個平方數(shù)的和?例如1、2、4、5等數(shù)能表示成平方和:

1=0+1, 2=1+1, 4=0+4, 5=1+4……

而3、6、7等數(shù)就不能表示成平方和。費馬完全解決了這個問題。對于素數(shù)這種特殊情況,費馬的結論是,一個奇素數(shù)是平方和當且僅當它是4k+1的形式,其中k是一個整數(shù)。

文章圖片8

圖盧茲市政廳內(nèi)的費馬雕像

進一步可以問,如果一個數(shù)能表示成平方和,那么有多少種方式?例如25可以表示成0+25,也可以表示成9+16;65可以表示成1+64,也可以表示成16+49。這個問題也得到了圓滿解決,特別地,4k+1型的素數(shù)恰好只有一種方式表示成平方和。

在費馬之后一百多年,歐拉進一步研究了這個問題。他證明了,如果一個大于1的奇數(shù)m只有一種方式表示成平方和x2+y2,并且在這唯一的一種方式中,x和y互素,那么m就是一個素數(shù)。(“x和y互素”即x和y僅有1這一個公約數(shù)。這個條件很重要,例如45只有一種平方和表示9+36,但它不是素數(shù)。)

這一定理可以用來判斷一個4k+1型的數(shù)是不是素數(shù),比直接根據(jù)定義來判斷更便捷。舉個例子,如果要判斷97是不是素數(shù),我們先寫出小于它一半的所有平方數(shù):0, 1, 4, 9, 16, 25, 36. 然后再從97中分別減去這些數(shù),得到:97, 96, 93, 88, 81, 72, 61. 這其中恰好只有一個平方數(shù)81,所以97只有唯一一種平方和表示42+92. 我們又能看出4和9互素,所以97是一個素數(shù)。

文章圖片9
文章圖片10

歐拉畫像丨圖源:維基百科

文章圖片11

歐拉的工作表明,1、2、3都是方便數(shù)。他隨后發(fā)現(xiàn)了一個簡單的方法,可以判斷一個給定的正整數(shù)是否是方便數(shù)。利用這一判別法,他研究了一萬以內(nèi)的所有正整數(shù),發(fā)現(xiàn)其中只有65個方便數(shù),羅列如下:

文章圖片12

可以觀察到,在1848之后就不再出現(xiàn)新的方便數(shù)了。于是歐拉在1778年猜測,以上這些就是全部的方便數(shù)。這就是我們所說的“方便數(shù)猜想”。

1798年,高斯寫出了他的名著《算術研究》。在這本書中,高斯系統(tǒng)地研究了整系數(shù)二次型,在這一理論體系下賦予了方便數(shù)新的含義。這涉及到代數(shù)數(shù)論里的一些基本概念,限于篇幅,我們就不作說明了。高斯同樣猜測1848就是最大的方便數(shù)。(歐拉的猜想當時尚未發(fā)表。)

文章圖片13

高斯畫像丨圖源:維基百科

在高斯之后,很多數(shù)學家都研究過方便數(shù)。1973年,Peter Weinberger利用日本數(shù)學家竜沢周雄在朗道-西格爾零點猜想方面的進展,證明了除去已知的65個方便數(shù)以外,最多只有兩個方便數(shù)。如果有兩個的話,其中一個一定是另一個的四倍,所以本質(zhì)上是同一種情況。(Weinberger后來成為一名計算機科學家,是AWK程序設計語言的作者之一。)

根據(jù)Stopple的評論,由張益唐的工作能夠證明,存在一個(很大的)自然數(shù)N,使得大于N的自然數(shù)都不是方便數(shù)。這樣一來,為了證明方便數(shù)猜想,只需要對不超過N的自然數(shù)逐一驗證便可。至于N究竟是多少,取決于張益唐定理1中的具體估計。在忽略常數(shù)因子的前提下,Stopple算出N可以取0.75×1025734. 這當然是一個天文數(shù)字,但畢竟還是一個有限的數(shù),并非無窮大。如果能夠大幅改進張益唐的估計,或許可以把N縮小到一個適合用計算機加以處理的范圍,從而證明方便數(shù)猜想。

張益唐本人曾說,在他的突破之后,“一百個猜想都變成定理”。或許這個有244年歷史的方便數(shù)猜想就是其中之一。當然,所有一切都建立在張益唐論文是正確的基礎之上。希望解析數(shù)論領域的專家們能夠早日完成對張益唐論文的檢驗,使得一切懸念得到破解。

    本站是提供個人知識管理的網(wǎng)絡存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多

    中文字幕日韩一区二区不卡| 黄片三级免费在线观看| 久热这里只有精品九九| 亚洲国产精品久久琪琪| 又黄又硬又爽又色的视频| 高清不卡一卡二卡区在线| 国产一级内射麻豆91| 一区二区三区日韩在线| 国内胖女人做爰视频有没有| 亚洲淫片一区二区三区| 亚洲熟女精品一区二区成人| 亚洲乱妇熟女爽的高潮片| 黄片美女在线免费观看| 亚洲男人的天堂色偷偷| 国产人妻精品区一区二区三区| 国产色偷丝袜麻豆亚洲| 国产精品一区二区日韩新区| 国产欧美日韩精品成人专区| 国产欧美日韩精品一区二区| 亚洲精品中文字幕熟女| 这里只有九九热精品视频| 一区二区不卡免费观看免费| 粉嫩内射av一区二区| 精品偷拍一区二区三区| 日韩精品综合福利在线观看| 久久偷拍视频免费观看| 午夜视频在线观看日韩| 久久精品亚洲精品一区| 日韩色婷婷综合在线观看| 丰满少妇高潮一区二区| 亚洲国产欧美精品久久| 日本精品啪啪一区二区三区| 国产又粗又硬又大又爽的视频| av中文字幕一区二区三区在线| 极品熟女一区二区三区| 千仞雪下面好爽好紧好湿全文| 色婷婷视频免费在线观看| 偷拍洗澡一区二区三区| 日韩欧美三级中文字幕| 黄色国产精品一区二区三区| 人妻少妇久久中文字幕久久|