動力電池包的安全問題,從根本上說都是電池系統(tǒng)熱失控問題。系統(tǒng)散熱能力與系統(tǒng)生熱能力不匹配,熱量在系統(tǒng)內(nèi)積累,電池溫度上升,最終導(dǎo)致燃爆等惡劣后果。 上圖是鋰電池?zé)崾Э厥疽鈭D。圖中體現(xiàn)的是性能正常的電芯,熱量積累引發(fā)熱失控的過程。撞擊,穿刺等機械損傷造成的熱失控,不在這張圖的描述范圍。 鋰電池負(fù)極SEI膜,是在系統(tǒng)溫度上升過程中,最先出現(xiàn)失效的結(jié)構(gòu),反應(yīng)起始溫度在90到100°左右??紤]電池的內(nèi)外溫差以及保留部分冗余設(shè)計,這就是我們的電池包工作溫度上限一般設(shè)置在50到60°之間的原因。 正常使用中,防止熱失控,一方面避免過多熱量的產(chǎn)生和積累;另一方面,提高熱管理水平,讓電池在它最適合的溫度環(huán)境下工作。 原因如前面所述,在過高溫度下使用,從鋰電池負(fù)極SEI膜溶解開始,失去保護的負(fù)極與電解液反應(yīng)放熱,電解液分解放熱,正極分解放熱,這些熱量積累起來,反應(yīng)逐漸加劇,反應(yīng)從一只單體蔓延到附近電芯,一個模組的反應(yīng),給整個電池箱內(nèi)的電芯加熱,這就是所謂熱失控的過程。 電池包都會標(biāo)注一個使用溫度范圍,低于下限溫度,如果在過低溫度下使用,電池也是無法正常工作的。低溫放電,理論上沒有跟熱失控有明確關(guān)聯(lián),但低溫造成電解質(zhì)活性降低,導(dǎo)電能力變差,進而導(dǎo)致放電能力變差,就是我們所謂的放不出電來,車子沒勁兒。如果是低溫強行充電,則會造成負(fù)極析鋰問題,容量會受到永久損傷不說,析出的鋰積累在那里,是熱失控的重要原因。 超過電芯允許能力的大倍率放電,系統(tǒng)熱量不能及時散去,熱量積累,逐漸加大了熱失控的風(fēng)險。同時,過大倍率的放電,使得正極材料的鋰離子嵌入過程超速進行,造成正極晶格坍塌,容量永久性損失。大倍率充電,使得鋰離子通過SIE膜的速度低于鋰離子向負(fù)極積聚的速度,出現(xiàn)鋰單質(zhì)在負(fù)極表面堆積現(xiàn)象,如果過程反復(fù)進行,鋰枝晶不斷生長,最終會刺破隔膜,造成內(nèi)短路,引發(fā)熱失控。 過充,充電截止電壓超過了電芯的最高電壓,造成正極活性材料晶格塌陷,鋰離子脫嵌通道受阻,使內(nèi)阻急劇升高,產(chǎn)生大量熱;負(fù)極堆積了過量的鋰單質(zhì),附著在負(fù)極表面,所謂析鋰現(xiàn)象。正負(fù)極的反應(yīng)過程都容易最終走向熱失控。 過放,本來應(yīng)該是鋰離子從負(fù)極脫出,嵌入正極晶格,但負(fù)極沒有那么多的正離子可以提供,使得負(fù)極的集流體銅排失去銅離子,銅離子游離在電解質(zhì)中,附著在正極或者負(fù)極,都會造成整個系統(tǒng)的失效。 對于熱失控風(fēng)險的防范,BMS主要是起到監(jiān)督作用,防止電池濫用發(fā)生。溫度,BMS有明確的工作溫度閾值設(shè)置,針對充電,放電均有最高最低的溫度限制,超過設(shè)置限制,系統(tǒng)不得開啟或者必須降功率運行;電壓,針對過充過放風(fēng)險,BMS設(shè)置有最高最低的充電和放電電壓閾值,確保在觸及電壓閾值時,系統(tǒng)自動停止運行。 熱管理,根據(jù)電池包的理想工作溫度,命令冷卻加熱系統(tǒng)工作,防止過冷過熱情況的出現(xiàn)。溫度對電池性能影響較大,目前一般只能測得電池表面溫度,而電池內(nèi)部溫度需要使用熱模型進行估計。常用的電池?zé)崮P桶憔S模型(集總參數(shù)模型)、一維乃至三維模型。 零維模型可以大致計算電池充放電過程中的溫度變化,估計精度有限,但模型計算量小,因此可用于實時的溫度估計。一維、二維及三維模型需要使用數(shù)值方法對傳熱微分方程進行求解,對電池進行網(wǎng)格劃分,計算電池的溫度場分布,同時還需考慮電池結(jié)構(gòu)對傳熱的影響(結(jié)構(gòu)包括內(nèi)核、外殼、電解液層等)。一維模型中只考慮電池在一個方向的溫度分布,在其他方向視為均勻。二維模型考慮電池在兩個方向的溫度分布,對圓柱形電池來說,軸向及徑向的溫度分布即可反映電池內(nèi)部的溫度場。二維模型一般用于薄片電池的溫度分析。三維模型可以完全反映方形電池內(nèi)部的溫度場,仿真精度較高,因而研究較多。 但三維模型的計算量大,無法應(yīng)用于實時溫度估計,只能用于在實驗室中進行溫度場仿真。為了讓三維模型的計算結(jié)果實時應(yīng)用,研究人員利用三維模型的溫度場計算結(jié)果,將電池產(chǎn)熱功率和內(nèi)外溫差的關(guān)系用傳遞函數(shù)表達,通過產(chǎn)熱功率和電池表面溫度估計電池內(nèi)部的溫度,具有在BMS中應(yīng)用的潛力。下圖所示為電池內(nèi)部溫度的估計流程。 一般地,鋰離子電池適宜的工作溫度為15~35℃,而電動汽車的實際工作溫度為-30~50℃,因此必須對電池進行熱管理,低溫時需要加熱,高溫時需要冷卻。熱管理包括設(shè)計與控制兩方面。溫度控制是通過測溫元件測得電池組不同位置的溫度,綜合溫度分布情況,熱管理系統(tǒng)控制電路進行散熱,熱管理的執(zhí)行部件一般有風(fēng)扇、水/油泵、制冷機等。 比如,可以根據(jù)溫度范圍進行分檔控制。Volt插電式混合動力電池?zé)峁芾矸譃?種模式:主動(制冷散熱)、被動(風(fēng)扇散熱)和不冷卻模式,當(dāng)動力電池溫度超過某預(yù)先設(shè)定的被動冷卻目標(biāo)溫度后,被動散熱模式啟動;而當(dāng)溫度繼續(xù)升高至主動冷卻目標(biāo)溫度以上時,主動散熱模式啟動。 在最新的《電動汽車用鋰離子動力蓄電池安全要求》征詢意見稿中, 對車用鋰離子動力蓄電池的熱失控和熱擴撒問題有詳細(xì)描述,并提出了相應(yīng)的報警保護措施和測試方法。 在附錄C的規(guī)范性附錄中提出了熱擴散乘員保護分析與驗證報告。 在附錄D的資料性附錄中提出了熱擴散試驗的方法。 并提出了判定發(fā)生熱失控的條件 該國家標(biāo)準(zhǔn)已經(jīng)完成了征詢意見階段, 馬上會形成正式標(biāo)準(zhǔn)文本發(fā)布以及實施,大家可以找到標(biāo)準(zhǔn)文本參考閱讀。 關(guān)于BMS的基礎(chǔ)知識,請參考前文: 動力電池管理系統(tǒng)(BMS)基礎(chǔ)(一); 動力電池管理系統(tǒng)(BMS)基礎(chǔ)(二); |
|