各位JMP小伙伴,經(jīng)過篩選設(shè)計的精簡或完全析因設(shè)計的描述,很多人會滿足已經(jīng)取得的成績,但也有一些精益求精的人會提出這樣的問題:現(xiàn)有的最佳因子水平組合一定是所有因子設(shè)置中最理想的選擇嗎?如果不是,又應(yīng)當(dāng)如何找出最優(yōu)化的因子設(shè)置? 確實,析因類的DOE更側(cè)重于分析哪些因子是重要的,到底有多重要以及它們之間是否會相互影響,卻沒有刻意去從整體中尋覓最佳的因子設(shè)置。為了解決這個問題,需要引入DOE中另一種設(shè)計類型——響應(yīng)曲面方法(Response Surface Methodology, 即RSM),這也是我們這期DOE系列要和大家探討的主題。 那么,響應(yīng)曲面設(shè)計的方法如何?具體應(yīng)該如何應(yīng)用呢?一起來看看吧! 在實際工作中,常常需要研究響應(yīng)變量究竟如何依賴于自變量X,進而能夠找到自變量的設(shè)置使得響應(yīng)變量獲得最佳值。 當(dāng)自變量的個數(shù)較少(通常不超過3個)時,則響應(yīng)曲面方法是最值得推薦的方法,它尤其適合于響應(yīng)變量望大(即越大越好)和望小(即越小越好)的情形。 通常來說,DOE的核心技術(shù)可分為實驗計劃和數(shù)據(jù)分析兩大類,響應(yīng)曲面方法也不例外。在數(shù)據(jù)分析方面,它和以前介紹的方法沒有什么本質(zhì)的不同。但在實驗計劃方面,則有顯著的改進。 響應(yīng)曲面方法的實驗計劃主要有中心復(fù)合設(shè)計和Box-Behnken設(shè)計兩種形式。 接下來,我們就用具體用圖形看看這兩種方法的具體表現(xiàn)形式吧! 1 中心復(fù)合設(shè)計 圖-1 三因子中心復(fù)合設(shè)計布點示意圖 圖-1是以三維空間立方體的形式展示了一個典型的三因子的中心復(fù)合設(shè)計的實驗計劃示意圖,在以下的敘述中給出的坐標(biāo)都已將各因子代碼化。 整個實驗由下面三部分實驗點構(gòu)成: 三部分 1 立方體點(Cube Point),用藍色點表示。各點坐標(biāo)皆為1或-1,這是與完全析因設(shè)計相同的部分。 2 中心點(Center Point),用綠色點表示。各點的三維坐標(biāo)皆為0。 3 軸點(Axial Point),用黃色點表示。除了一維自變量坐標(biāo)為±a(旋轉(zhuǎn)性指數(shù))外,其余維度的自變量坐標(biāo)皆為0。在三因子情況下,共有6個軸點。 當(dāng)取 (k為因子個數(shù))時, 該類中心復(fù)合設(shè)計兼具 旋轉(zhuǎn)性和序貫性的優(yōu)點, 是最典型的α值設(shè)定情形。 所謂旋轉(zhuǎn)性是指響應(yīng)變量的預(yù)測精度在以設(shè)計中心為球心的球面上是相同的; 所謂序貫性是指早先進行的完全析因設(shè)計實驗結(jié)果仍然可以被利用。 2 Box-Behnken設(shè)計 響應(yīng)曲面方法的另一種形式就是Box-Behnken設(shè)計。這種設(shè)計的特點是將因子各實驗點取在立方體每條棱的中點上。 圖-2 三因子Box-Behnken設(shè)計布點示意圖 圖-2同樣以三維空間立方體的形式展示了一個三因子的Box-Behnken設(shè)計的實驗計劃示意圖。 整個實驗由下面兩部分實驗點構(gòu)成: 兩部分 1 邊中心點(Side Center Point),用白色點表示。除了一維自變量坐標(biāo)為0外,其余維度的自變量坐標(biāo)皆為±1。在三因子情況下,共12個邊中心點。 2 中心點(Center Point),用黑色點表示。各點的三維坐標(biāo)皆為0。 Box-Behnken設(shè)計的優(yōu)點是: 實驗次數(shù)略少于同等因子個數(shù)下的 中心復(fù)合設(shè)計, 同時具有近似旋轉(zhuǎn)性, 但其最大的缺點是沒有序貫性。 由以上兩個示意圖可以清晰地發(fā)現(xiàn): 響應(yīng)曲面方法有規(guī)律、有目的地在實驗計劃中增添了有限次數(shù)的各因子的中心實驗點和拓展實驗點,這為研究曲率的變化趨勢、最優(yōu)區(qū)域的確定等提供了極大的便利。 關(guān)于響應(yīng)曲面方法在數(shù)據(jù)分析方面的特點,由于其和一般的析因設(shè)計DOE非常類似,此處就不做過多贅述,主要還是使用成熟的統(tǒng)計分析軟件JMP,并通過一個工業(yè)案例來介紹響應(yīng)曲面方法的實際應(yīng)用。 場景 如某化工工藝研發(fā)工程師研究如何設(shè)定催化劑(Catalyst%)和穩(wěn)定劑(Stabilizer%)的配置比例,使得某化學(xué)試劑的不純度(Impurities%)最低? 顯然,此時的工程師已經(jīng)不滿足于僅由2的2次方完全析因設(shè)計所構(gòu)建的廣義線性模型,而是希望在一個更廣闊、更精細的可行性空間里充分挖掘過程的潛能,尋覓到一個最理想或是最接近理想值的配置比例。當(dāng)然,實現(xiàn)這一目的的同時還要兼顧實驗的經(jīng)濟成本和時間次數(shù)等。 這時候,將傳統(tǒng)的析因設(shè)計方法擱置一旁,適時地調(diào)用響應(yīng)曲面方法,往往會起到最佳的效果。 為了提高我們應(yīng)用DOE的工作效率,本文將直接使用JMP進行響應(yīng)曲面方法分析,試圖獲得化學(xué)試劑的不純度最低時的制劑配置比例。 首先,我們根據(jù)實際情況,以中心復(fù)合設(shè)計為原則,迅速地確定了13次運行次數(shù)的實驗規(guī)模以及每次實驗時的因子具體設(shè)置。 接著,我們根據(jù)既定的實驗計劃進行實施,并且及時收集每次實驗的響應(yīng)值。這時,將以上結(jié)果錄入之后,就可以得到如下圖-3所示的數(shù)據(jù)表啦! 圖-3 中心復(fù)合設(shè)計的實驗結(jié)果匯總表 然后,運用“擬合模型”操作平臺,就可以得到具體詳盡的定量分析了。這個完整的操作過程各位小伙伴可以觀看下方視頻學(xué)習(xí)哦! 遵循我們“強調(diào)通俗易懂,淡化統(tǒng)計原理”的一貫原則,我們就不多在統(tǒng)計參數(shù)上花費筆墨了,依然借助JMP直觀形象的可視化報表來說明分析結(jié)果。 圖-4 等高線圖 (Contour Plot):如定義響應(yīng)規(guī)格限, 還可勾勒出合規(guī)區(qū)域 圖-5 曲面圖 (Surface Plot) 在求出精確解之前,我們先觀察一下圖-4所示的等高線圖(Contour Plot)和圖-5所示的曲面圖(Surface Plot)。 從兩個圖中都可以清楚地看到,在該實驗區(qū)域內(nèi)確實存在一個最小值。 那么這個最小值究竟是多少?它又是在什么條件下產(chǎn)生的呢? 這可以進一步借助JMP獨有的預(yù)測刻畫器(Prediction Profiler),如圖-6所示,通過單擊“最大化意愿”就可以輕輕松松地一鍵式完成,得到最優(yōu)化的配置比例:催化劑%= 1.41,穩(wěn)定劑%=3.28,這時產(chǎn)生的最低不純凈度%=3.16,并且這是一個在我們已進行的實驗當(dāng)中未曾達到的結(jié)果。 圖-6 預(yù)測刻畫器 (Prediction Profiler) 4分鐘小視頻,學(xué)習(xí)響應(yīng)曲面設(shè)計方法: 至此,我們匆匆走過了應(yīng)用DOE優(yōu)化流程的探索之路,你也可以通過后續(xù)的驗證實驗進一步評估結(jié)論的可靠性。 其實在DOE的優(yōu)化過程中,還有很多其他實用的知識和技巧,我們將會在今后的文章中再做深入的介紹和探討。敬請期待! |
|