高中數(shù)學(xué)“數(shù)列”的所有有關(guān)公式 等比數(shù)列:
若q=1 則S=n*a1
若q≠1
推倒過(guò)程:
S=a1+a1*q+a1*q^2+……+a1*q^(n-1)
等式兩邊同時(shí)乘q
S*q=a1*q+a1*q^2+a1*q^3+……+a1*q^
1式-2式 有
S=a1*(1-q^n)/(1-q)
等差數(shù)列
推倒過(guò)程:
S=a1+(a1+d)+(a1+2d)+……(a1+(n-1)*d)
把這個(gè)公式倒著寫(xiě)一遍
S=(a1+(n-1)*d) +(a1+(n-2)*d)+(a1+(n-3)*d)+……+a1
上兩式相加有
S=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2
一、 等差數(shù)列
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
等差數(shù)列的通項(xiàng)公式為:
an=a1+(n-1)d (1)
前n項(xiàng)和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng)。
,
且任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))/公差+1
等差數(shù)列的應(yīng)用:
日常生活中,人們常常用到等差數(shù)列如:在給各種產(chǎn)品的尺寸劃分級(jí)別
時(shí),當(dāng)其中的最大尺寸與最小尺寸相差不大時(shí),長(zhǎng)安等差數(shù)列進(jìn)行分級(jí)。
若為等差數(shù)列,且有ap=q,aq=p.則a(p+q)=-(p+q)。
若為等差數(shù)列,且有an=m,am=n.則a(m+n)=0。
等比數(shù)列:
如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示。
(1)等比數(shù)列的通項(xiàng)公式是:An=A1*q^(n-1)
(2)前n項(xiàng)和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)
(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)若m,n,p,q∈N*,則有:ap·aq=am·an,
等比中項(xiàng):aq·ap=2ar ar則為ap,aq等比中項(xiàng)。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
性質(zhì):
①若 m、n、p、q∈N,且m+n=p+q,則am·an=ap*aq;
②在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.
“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.
在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.
注意:上述公式中A^n表示A的n次方。
等比數(shù)列在生活中也是常常運(yùn)用的。
如:銀行有一種支付利息的方式---復(fù)利。
即把前一期的利息赫本金價(jià)在一起算作本金,
在計(jì)算下一期的利息,也就是人們通常說(shuō)的利滾利。
按照復(fù)利計(jì)算本利和的公式:本利和=本金*(1+利率)存期