大模型趨勢(shì),給與之相關(guān)的一切來了億點(diǎn)“小震撼”。 人工智能/機(jī)器學(xué)習(xí)平臺(tái)正是其中之一。 它與大模型趨勢(shì)緊密相關(guān),能直接反映出各大云廠商的AI技術(shù)研發(fā)儲(chǔ)備水平,以及對(duì)最新趨勢(shì)的洞察和理解能力。 究竟誰家實(shí)力更強(qiáng)?正被業(yè)內(nèi)所津津樂道。 而技術(shù)風(fēng)向劇變之下,AI/ML平臺(tái)也有了新的評(píng)價(jià)標(biāo)準(zhǔn)。 國(guó)際權(quán)威機(jī)構(gòu)Forrester最新發(fā)布的“首份中國(guó)人工智能/機(jī)器學(xué)習(xí)平臺(tái)報(bào)告”,恰逢其時(shí)給出參考。 Forrester Research是一家獨(dú)立的技術(shù)和市場(chǎng)調(diào)研公司,其發(fā)布的主題報(bào)告在中國(guó)乃至全球范圍內(nèi)具有很高的市場(chǎng)認(rèn)可度。 其中The Forrester Wave類型兩年發(fā)布一次,是Forrester影響力最高的報(bào)告類型。 報(bào)告調(diào)研了國(guó)內(nèi)市場(chǎng)14家主流云廠商,包括百度智能云、阿里云、華為云、騰訊云等,從產(chǎn)品能力、戰(zhàn)略規(guī)劃和市場(chǎng)表現(xiàn)三個(gè)方面對(duì)其進(jìn)行評(píng)測(cè)。 基于25項(xiàng)細(xì)分標(biāo)準(zhǔn)的全面評(píng)估,F(xiàn)orrester將這14家主流廠商劃分為4個(gè)象限:領(lǐng)導(dǎo)者、優(yōu)秀表現(xiàn)者、競(jìng)爭(zhēng)者和挑戰(zhàn)者。 具體亮點(diǎn),一起來看。 新趨勢(shì)帶來哪些新標(biāo)準(zhǔn)先來看報(bào)告的核心結(jié)論。 在這張象限圖里,以戰(zhàn)略水平為橫軸、產(chǎn)品能力為縱軸,按照領(lǐng)導(dǎo)者、優(yōu)秀表現(xiàn)者、競(jìng)爭(zhēng)者和挑戰(zhàn)者四個(gè)象限進(jìn)行劃分,同時(shí)也體現(xiàn)了各家的市場(chǎng)表現(xiàn)。 各個(gè)象限的分布如下: 領(lǐng)導(dǎo)者(2個(gè))、優(yōu)秀表現(xiàn)者(5個(gè))、競(jìng)爭(zhēng)者(4個(gè))、挑戰(zhàn)者(3個(gè))。 位于第一梯隊(duì)的分別是百度智能云和阿里云。其中,百度智能云表現(xiàn)亮眼,拿下綜合得分第一。 第二梯隊(duì)競(jìng)爭(zhēng)最為激烈,5家廠商在象限圖中的位置非常緊湊。 如上結(jié)論是Forrester進(jìn)行25項(xiàng)評(píng)估后得出的結(jié)果。 而除了梳理當(dāng)下中國(guó)市場(chǎng)AI/ML平臺(tái)競(jìng)爭(zhēng)格局外,F(xiàn)orrester更進(jìn)一步為評(píng)估AI/ML平臺(tái)提出新的標(biāo)準(zhǔn)參考。 以下三點(diǎn)最為關(guān)鍵:
為什么? Forrester認(rèn)為,在生成式AI和大模型趨勢(shì)影響下,AI應(yīng)用落地被更進(jìn)一步重視,以推動(dòng)生產(chǎn)力水平提高、加速業(yè)務(wù)創(chuàng)新。 在當(dāng)下的中國(guó)市場(chǎng)里,企業(yè)正迫切需要能在自身業(yè)務(wù)環(huán)境內(nèi)解決復(fù)雜問題的AI/ML平臺(tái)。 而想要滿足市場(chǎng)需求,如上提出的三個(gè)方面缺一不可。 其一,要有提供數(shù)據(jù)管理、模型訓(xùn)練和AI應(yīng)用開發(fā)能力的工具鏈。 這也是AI/ML平臺(tái)的核心。 Forrester提出平臺(tái)方不僅要關(guān)注模型構(gòu)建、訓(xùn)練評(píng)估方面的關(guān)鍵工具,還應(yīng)該重視AI應(yīng)用開發(fā)所需的工具。 比如面向?qū)I(yè)人員提供的AI框架、Notebook;面向業(yè)務(wù)人員的低代碼、可視化工具。 除此之外,數(shù)據(jù)管理工具對(duì)模型構(gòu)建也有重要影響。 其二,提供面向行業(yè)的易用加速器。 Forrester指出國(guó)內(nèi)市場(chǎng)大多公司都缺乏既懂AI算法又懂業(yè)務(wù)知識(shí)的工程師,這使得他們很難根據(jù)自身業(yè)務(wù)需求量身定制算法。 目前他們擁抱大模型趨勢(shì)的“姿勢(shì)”,要么是拿來大模型微調(diào)、要么是進(jìn)行提示工程。 所以,能加速AI模型構(gòu)建、應(yīng)用開發(fā)的加速工具非常關(guān)鍵。如可視化工具、低代碼開發(fā)等都能進(jìn)一步加速創(chuàng)新。 其三,通過大規(guī)模的模型運(yùn)營(yíng)加速大模型落地。 模型運(yùn)營(yíng)(ModelOps)包括模型部署、監(jiān)控、更新、自動(dòng)化等方面,可解決模型漂移、性能下降、安全維護(hù)和模型更新等問題,提供A/B測(cè)試、自動(dòng)調(diào)整、模型再訓(xùn)練等能力。 在企業(yè)擁抱大模型趨勢(shì)下,具備大規(guī)模模型運(yùn)營(yíng)的AI/ML平臺(tái)能更好幫助企業(yè)開發(fā)部署管理AI模型,更進(jìn)一步推動(dòng)企業(yè)數(shù)字化轉(zhuǎn)型、降本增效。 總結(jié)來看,一個(gè)AI/ML平臺(tái)想要成為新趨勢(shì)中的領(lǐng)先者,需要提供簡(jiǎn)單易用的工具、滿足行業(yè)需求、并能加速企業(yè)應(yīng)用AI。 而更具體需要具備哪些能力,還得從當(dāng)下領(lǐng)先者身上展開分析。 如何躋身“領(lǐng)導(dǎo)者”象限?在本次Forrester報(bào)告中,百度智能云的表現(xiàn)讓人眼前一亮。 它是唯二進(jìn)入到“領(lǐng)導(dǎo)者”象限的云廠商,同時(shí)還獲得綜合得分第一、9項(xiàng)細(xì)分評(píng)分第一。 產(chǎn)品能力方面,百度智能云在數(shù)據(jù)、訓(xùn)練、預(yù)測(cè)推理、應(yīng)用四個(gè)細(xì)分領(lǐng)域都處于領(lǐng)先水平。 同時(shí)在戰(zhàn)略維度和市場(chǎng)規(guī)模方面,百度也在其中多個(gè)項(xiàng)目獲得第一。 Forrester評(píng)價(jià)百度智能云為“中國(guó)基礎(chǔ)模型的先行者之一”:
其具體能力來自百度AI平臺(tái),產(chǎn)品包括BML、EasyDL和百度智能云千帆大模型平臺(tái)等。 而以百度智能云AI平臺(tái)為例,便可更具體分析當(dāng)下AI/ML平臺(tái)想要在市場(chǎng)中占據(jù)領(lǐng)先身位,應(yīng)該具備哪些能力。 按照Forrester報(bào)告的劃分維度,具體能力可從五方面出發(fā):數(shù)據(jù)、訓(xùn)練、預(yù)測(cè)推理、應(yīng)用和架構(gòu)。這也是AI模型開發(fā)應(yīng)用過程中最核心的五大要素。 首先來看數(shù)據(jù)方面。 在數(shù)據(jù)處理部分,百度AI平臺(tái)可同時(shí)處理結(jié)構(gòu)化、非結(jié)構(gòu)化數(shù)據(jù)。 支持65種以上的數(shù)據(jù)可視化,包括餅圖、熱力圖、散點(diǎn)圖、地圖等。支持10+種過濾組件,用戶只需進(jìn)行簡(jiǎn)單配置和拖拽,就能實(shí)現(xiàn)實(shí)時(shí)數(shù)據(jù)監(jiān)控、輔助決策。 同時(shí)還支持30+種數(shù)據(jù)格式標(biāo)注,提升建模環(huán)節(jié)中人力最為集中的標(biāo)注環(huán)節(jié)的效率。 值得一提的是,百度AI平臺(tái)提供了主動(dòng)學(xué)習(xí)標(biāo)注能力,系統(tǒng)可以直接從數(shù)據(jù)集里分析圖片的模式,自動(dòng)篩選出來最關(guān)鍵的圖片,提示有限標(biāo)注。 比如有10000張圖需要標(biāo)注,系統(tǒng)會(huì)將有特點(diǎn)的圖前置、有重復(fù)性的后置,這樣一來只標(biāo)注前3000張圖,后7000張就能自動(dòng)標(biāo)好。 據(jù)介紹,這種方式平均可為企業(yè)用戶節(jié)省70-90%的人力。大幅降低了“人工智能”中人工的比例。 此外,在特征工程方面,百度AI平臺(tái)集成了專業(yè)級(jí)特征庫管理能力,提供特征的增刪改查、特征生產(chǎn)、特征共享、特征版本管理、數(shù)據(jù)驗(yàn)證等功能。 支持批式、流式不同形式數(shù)據(jù)用于預(yù)測(cè)服務(wù),這樣能保證模型訓(xùn)練和最終預(yù)測(cè)時(shí)特征一致,直接關(guān)乎模型的準(zhǔn)確性高低。 以上能力反映到具體數(shù)字層面,F(xiàn)orrester報(bào)告給百度AI平臺(tái)的數(shù)據(jù)能力打分為5(滿分),大幅領(lǐng)先于其他廠商。 其二是模型訓(xùn)練環(huán)節(jié)。 這也是最新趨勢(shì)中市場(chǎng)需求最明顯的方面之一,它的受眾不僅有專業(yè)開發(fā)者,還包括對(duì)AI算法并不專長(zhǎng)的業(yè)務(wù)人員,所以這要求提供能力的AI/ML平臺(tái)要足夠易用和靈活。 參照百度AI平臺(tái)的做法。 一方面是重視“廣度”,支持多種數(shù)據(jù)的建模和訓(xùn)練,如圖像、視頻、文本、語音等。 建模方式也很靈活,支持Notebook/WebIDE開發(fā)、拖拽式可視化開發(fā)、腳本調(diào)參、自定義作業(yè)等多種建模方式,可以面向不同專業(yè)水平人群,完成高精度模型的定制開發(fā)。 另一方面是“深度”。在自家飛槳算法團(tuán)隊(duì)的支持下,百度AI平臺(tái)對(duì)大量的場(chǎng)景算子做了深度優(yōu)化。包括圖像分類、物體檢測(cè)、文本分類、序列標(biāo)注等方面。 比如基于Paddle算子進(jìn)行深度優(yōu)化的PP YOLO,效果已經(jīng)超越了目標(biāo)檢測(cè)領(lǐng)域標(biāo)桿YOLO V3。 易用性也是一大重點(diǎn)。在百度AI平臺(tái)上可以實(shí)現(xiàn)零代碼建模和可視化建模。前者只需用戶上傳數(shù)據(jù)、選擇類型即可開始建模;后者通過拖拉拽拼接組件、設(shè)置各個(gè)部分參數(shù)即可組配出一個(gè)建模流程。 另外,當(dāng)下AI計(jì)算量正以每年至少10倍的速度增長(zhǎng),深度學(xué)習(xí)訓(xùn)練中調(diào)整任務(wù)資源的能力也變得尤為重要。百度AI平臺(tái)支持多機(jī)多卡分布式訓(xùn)練,并提供多種類型算力資源。 加上百度本身就有訓(xùn)練超大模型的豐富經(jīng)驗(yàn),在視覺大模型、生成式AI等方面能都整合了自身能力。如可以進(jìn)行自動(dòng)超參數(shù)搜索、不平衡數(shù)據(jù)自動(dòng)處理、超大規(guī)模預(yù)訓(xùn)練等。 由此在百度AI平臺(tái)上,也能看到非常多開發(fā)工具,用來提升編程效率。 第三個(gè)能力維度是推理。 隨著大模型趨勢(shì)發(fā)展,推理市場(chǎng)還將進(jìn)一步擴(kuò)大、甚至呈指數(shù)級(jí)趨勢(shì)增長(zhǎng),這給AI/ML平臺(tái)也提出很大挑戰(zhàn)。 從百度AI平臺(tái)的做法來看,他們主要關(guān)注了開發(fā)效率、性能優(yōu)化、靈活度、廣泛度幾個(gè)方面。 其推理模塊Model Serve支持16種AI框架,包括最常見的Paddle、Tensor Flow、PyTorch,以及科學(xué)計(jì)算方面的Matlab/R,機(jī)器學(xué)習(xí)方面的Xg boost等。 性能優(yōu)化方面,通過在調(diào)度層上直接抽象出來一個(gè)異步推理調(diào)度器,實(shí)現(xiàn)推理Worker異構(gòu),將整個(gè)服務(wù)器性能和GPU利用率提高1倍以上。 同時(shí)支持自動(dòng)化批處理,對(duì)不同長(zhǎng)度任務(wù)進(jìn)行分類,將大小類似的任務(wù)編入同一個(gè)batch以充分利用異構(gòu)資源,這種方式在異步解耦的基礎(chǔ)上, 還能再提升70%效率。 第四方面需要關(guān)注的是應(yīng)用。 報(bào)告中的應(yīng)用主要考察各平臺(tái)的應(yīng)用效率。 即如何才能利用現(xiàn)有資源, 快速地將數(shù)據(jù)轉(zhuǎn)化為企業(yè)生產(chǎn)力。 百度AI平臺(tái)可以提供從數(shù)據(jù)采集清洗,到模型開發(fā)訓(xùn)練、模型管理,再到云端及離線推理服務(wù)管理等AI開發(fā)過程的全生命周期管理能力。 值得一提的是,百度AI平臺(tái)是國(guó)內(nèi)第一家達(dá)到信通院MLOps標(biāo)準(zhǔn)旗艦級(jí)的平臺(tái)。 目前百度AI平臺(tái)的能力已經(jīng)向金融、能源、交通等行業(yè)輸出。服務(wù)浦發(fā)銀行、北京銀行,以及國(guó)家電網(wǎng)、南方電網(wǎng)等。 2022年,百度智能云AI平臺(tái)公有云付費(fèi)用戶數(shù)增長(zhǎng)49%,私有化客戶數(shù)增長(zhǎng)32%,開發(fā)者增加了122.8萬,增長(zhǎng)率40%左右;復(fù)購(gòu)率連年上升,在重點(diǎn)行業(yè)中復(fù)購(gòu)率已經(jīng)達(dá)到50%。 最后在架構(gòu)維度上,百度AI平臺(tái)的架構(gòu)設(shè)計(jì)在Forrester評(píng)分中獲得了滿分。 如果用一句話總結(jié),百度AI平臺(tái)達(dá)到“領(lǐng)導(dǎo)者”水平,就是做到了:
而通過對(duì)百度AI平臺(tái)整體能力的分析就不難發(fā)現(xiàn),其中很多工具、構(gòu)思都正符合當(dāng)下大模型趨勢(shì)的新需求。 實(shí)際上,在技術(shù)風(fēng)向劇變的背景下,不僅對(duì)已有架構(gòu)調(diào)整以適應(yīng)需求變化,提出新的應(yīng)對(duì)之道,也是趨勢(shì)使然。 大模型時(shí)代,云上AI新競(jìng)爭(zhēng)格局初定所以,大模型浪潮沖擊,市場(chǎng)對(duì)AI/ML平臺(tái)的需求究竟發(fā)生了哪些新變化? 在過去,CV、NLP的諸多模型雖有SOTA之名,在產(chǎn)業(yè)界卻仍更多被用在非核心業(yè)務(wù)上。而現(xiàn)在,大模型憑借其顛覆傳統(tǒng)工作流的驚人能力,開始受到越來越多認(rèn)可,被認(rèn)為是突破各行業(yè)智能化瓶頸的關(guān)鍵所在。 但對(duì)于云廠商而言,這并不意味著,大模型時(shí)代之于小模型時(shí)代,是“從零再出發(fā)”。 實(shí)際上,隨著大模型應(yīng)用的深入,Agent(智能體)等技術(shù)領(lǐng)域越來越受到關(guān)注。核心在于,大模型基于自身能力,在實(shí)際應(yīng)用中連接調(diào)度成熟的小模型去解決問題,這樣的模式被認(rèn)為在生產(chǎn)場(chǎng)景中落地更快、更具價(jià)值。 因此,在大模型開啟的“新時(shí)代”里,對(duì)于AI/ML平臺(tái)的“領(lǐng)導(dǎo)者”而言,小模型時(shí)代的技術(shù)積淀和大模型時(shí)代的技術(shù)創(chuàng)新,兩者是相輔相成,缺一不可的。 百度AI平臺(tái)在“新時(shí)代”交出的答卷——百度智能云千帆大模型平臺(tái)就是一例。 作為一個(gè)一站式企業(yè)級(jí)大模型平臺(tái),百度智能云千帆平臺(tái)本質(zhì)上是百度在芯片層、框架層、模型層和應(yīng)用層均有深度積累后的產(chǎn)物。 具體體現(xiàn)在五個(gè)方面: 第一,在算力層面,百度智能云千帆平臺(tái)可以提供高效、高性價(jià)比的異構(gòu)算力服務(wù)。 在大模型訓(xùn)練環(huán)節(jié),通過分布式并行訓(xùn)練策略和微秒級(jí)互聯(lián)能力,百度千帆平臺(tái)上萬卡規(guī)模集群訓(xùn)練的加速比可以達(dá)到95%。同時(shí)萬卡集群有效訓(xùn)練時(shí)間占比能達(dá)到96%,大幅降低算力和時(shí)間成本。 第二,在模型層面,百度千帆平臺(tái)納管了包括文心大模型、Llama系列、ChatGLM等在內(nèi)的44個(gè)國(guó)內(nèi)外主流大模型,支持用戶快速調(diào)用API,直接獲取大模型能力。 對(duì)于第三方大模型,百度千帆平臺(tái)還針對(duì)性地進(jìn)行了優(yōu)化,包括中文增強(qiáng)、性能增強(qiáng)、上下文增強(qiáng)等等。 百度透露,百度千帆平臺(tái)的大模型API調(diào)用量正持續(xù)高速攀升。目前,百度千帆平臺(tái)已經(jīng)服務(wù)了超過2萬家客戶。 第三,對(duì)于希望基于現(xiàn)有大模型進(jìn)行二次開發(fā)的客戶,百度千帆平臺(tái)為大模型的再訓(xùn)練、微調(diào)、評(píng)估和部署等環(huán)節(jié)提供全生命周期工具鏈,以及41個(gè)高質(zhì)量數(shù)據(jù)集,能實(shí)現(xiàn)針對(duì)具體業(yè)務(wù)場(chǎng)景的模型快速調(diào)優(yōu)。 第四,在應(yīng)用層面,針對(duì)企業(yè)基于大模型開發(fā)AI原生應(yīng)用的需求,百度千帆平臺(tái)提供了一系列能力組件和框架。 比如,內(nèi)置226個(gè)Prompt模板,讓開發(fā)者在不熟悉提示工程的情況下,也能快速讓大模型的回答質(zhì)量更上一層樓。 而在10月17日的百度世界大會(huì)上,百度智能云還發(fā)布了“百度千帆AI原生應(yīng)用開發(fā)工作臺(tái)”。具體而言,這個(gè)“工作臺(tái)”由兩部分組成:應(yīng)用組件+應(yīng)用框架。 應(yīng)用組件服務(wù)由AI和基礎(chǔ)云兩大類組件構(gòu)成。 其中AI組件,即大模型能力的組件化封裝,包含問答、思維鏈(CoT)等大語言模型組件,以及文生圖、語音識(shí)別等多模態(tài)組件。 基礎(chǔ)云組件,則包含向量數(shù)據(jù)庫、對(duì)象存儲(chǔ)等傳統(tǒng)云服務(wù)能力。 應(yīng)用框架則面向具體的場(chǎng)景任務(wù),可以理解為以大模型能力為基礎(chǔ),上述應(yīng)用組件的有效組合應(yīng)用。 目前,百度千帆平臺(tái)提供了檢索增強(qiáng)生成(RAG)和智能體(Agent)等常用的AI原生應(yīng)用框架。 其中,RAG框架可以把企業(yè)專有領(lǐng)域內(nèi)的知識(shí),和大模型問答能力結(jié)合起來,對(duì)專業(yè)知識(shí)做出更為精準(zhǔn)的回答。 三一重工就基于這一RAG框架,快速實(shí)現(xiàn)了官網(wǎng)智能客服應(yīng)用的開發(fā)和上線。 百度集團(tuán)執(zhí)行副總裁、百度智能云事業(yè)群總裁沈抖透露,搭建這樣一個(gè)“小助手”,即使需要處理幾千篇萬字長(zhǎng)文檔,成本也只需幾百塊錢;之后用戶每次資訊,成本僅需幾分錢。 基于Agent框架,大模型則可以對(duì)人類給定的任務(wù)進(jìn)行自動(dòng)拆解,自動(dòng)規(guī)劃并調(diào)用各種組件協(xié)同完成任務(wù),同時(shí)根據(jù)任務(wù)完成效果自我反饋,改進(jìn)自身能力。 目前,中天鋼鐵已基于這一Agent框架,打造了智能化的“企業(yè)調(diào)度中樞”,實(shí)現(xiàn)了任務(wù)指令的自動(dòng)感知、分解和執(zhí)行。 比如,在發(fā)現(xiàn)鋼鐵產(chǎn)量不達(dá)標(biāo)時(shí),只需提問一次,大模型就可以自動(dòng)調(diào)用平臺(tái)納管的各種資源和API,找出未達(dá)標(biāo)原因,及時(shí)調(diào)整排產(chǎn)計(jì)劃并發(fā)送郵件通知調(diào)度人員。 最后,百度千帆還上線了“AI原生應(yīng)用商店”,連接起了AI原生應(yīng)用的供應(yīng)方和需求方,提供了一個(gè)大模型商業(yè)機(jī)會(huì)的匯集地。 不難看出,一方面,百度智能云千帆大模型平臺(tái)的快速推出得益于百度自身大模型技術(shù)的發(fā)展;另一方面,百度AI平臺(tái)多年以來積累的產(chǎn)品能力,以及豐富的工業(yè)界實(shí)踐經(jīng)驗(yàn),使得百度千帆平臺(tái)在應(yīng)用側(cè)率先發(fā)揮出了實(shí)效。 根據(jù)IDC數(shù)據(jù),2022年中國(guó)AI公有云服務(wù)市場(chǎng)逆市呈現(xiàn)出80.6%的正增長(zhǎng),整體市場(chǎng)規(guī)模達(dá)到79.7億元人民幣。 IDC分析認(rèn)為,生成式AI、大模型的落地目前正處于起步階段,這些能力在公有云上能看到更快速的更新迭代,短期內(nèi)將為AI公有云服務(wù)帶來明顯利好。 Gartner也指出,生成式AI由大模型驅(qū)動(dòng),這就對(duì)計(jì)算基礎(chǔ)設(shè)施提出了強(qiáng)大、高可擴(kuò)展的要求?!霸铺峁┝送昝赖慕鉀Q方案和平臺(tái),生成式AI競(jìng)賽的關(guān)鍵參與者必然是頭部云廠商。” 結(jié)合Forrester這份最新報(bào)告,可以看出對(duì)于云廠商而言,AI云服務(wù)已經(jīng)成為新的競(jìng)爭(zhēng)焦點(diǎn)。 而競(jìng)爭(zhēng)力如何衡量,現(xiàn)在評(píng)價(jià)的標(biāo)準(zhǔn)也逐漸清晰。 歸結(jié)起來,核心還是兩個(gè)方面: 其一,站在開發(fā)者、企業(yè)用戶的角度,是依托于AI云服務(wù)平臺(tái)的能力,能否真正高性價(jià)比地解決復(fù)雜業(yè)務(wù)中面臨的實(shí)際問題,以及智能化升級(jí)過程中,尤其是大模型浪潮下專業(yè)人才短缺的問題。 其二,從技術(shù)趨勢(shì)的角度來講,是跟大模型更為緊密的結(jié)合。 百度AI平臺(tái)的布局,可以視作這種最新競(jìng)爭(zhēng)格局變化之中,頭部AI云廠商給出的一份參考答案。 至于成效如何?更多的落地案例中,可見真章。 — 完 — 量子位 QbitAI · 頭條號(hào)簽約 關(guān)注我們,第一時(shí)間獲知前沿科技動(dòng)態(tài) |
|