一、毒力機(jī)制 在過去的10年中,對鮑曼不動桿菌毒力機(jī)制的研究主要包括抗干燥性、抵抗消毒、生物膜形成和運(yùn)動能力,總體來說,鮑曼不動桿菌具有在不利條件下生存的顯著能力。最近發(fā)現(xiàn)的毒力因子,例如促進(jìn)鮑曼不動桿菌發(fā)病機(jī)制的分泌系統(tǒng)、表面糖綴合物和微量營養(yǎng)素獲取系統(tǒng),可能決定了鮑曼不動桿菌菌株的毒力潛力。 抗干燥性即在干燥條件下保持活力的能力,因鮑曼不動桿菌的臨床分離株而異,有些分離株可存活近100天[6, 7]。雖然缺乏直接證據(jù),但莢膜多糖很可能有助于鮑曼不動桿菌對干燥的抵抗力[8]。 消毒劑(如洗必泰)廣泛用于醫(yī)院和其他醫(yī)療衛(wèi)生機(jī)構(gòu)。鮑曼不動桿菌已被證實(shí)可以使用不動桿菌外排蛋白將洗必泰積極泵出細(xì)胞[9],從而可能促進(jìn)細(xì)菌的存活。 微生物生物膜是包裹在細(xì)胞外基質(zhì)中的群落。鮑曼不動桿菌種群會在皮膚傷口、軟組織、封閉敷料、醫(yī)療器械(如氣管導(dǎo)管,以及聚碳酸酯和不銹鋼材質(zhì)的器材)上形成堅固的生物膜[10, 11]。 細(xì)菌運(yùn)動與生物體致病的能力密切相關(guān),例如鞭毛對于銅綠假單胞菌來說猶如細(xì)菌“馬達(dá)”,是決定毒力的關(guān)鍵。對鮑曼不動桿菌臨床分離株的流行病學(xué)研究發(fā)現(xiàn),血液分離株比痰分離株更具運(yùn)動性[12],這表明鮑曼不動桿菌可能也存在一種“馬達(dá)”影響其運(yùn)動能力,從而決定其毒力大小。 常見的細(xì)菌糖綴合物包括莢膜多糖、糖基化蛋白、脂多糖和聚糖。因?yàn)槿狈ηv膜的菌株很容易被補(bǔ)體殺死,所以鮑曼不動桿菌的莢膜多糖可以被認(rèn)為是其主要的毒力因子[13]。缺乏糖基化系統(tǒng)的細(xì)胞在生物膜形成方面存在缺陷[14]。鮑曼不動桿菌通過改變脂多糖的脂質(zhì)A,阻止抗生素黏菌素的結(jié)合,從而產(chǎn)生耐藥性[15, 16]。而菌毛聚糖可能已經(jīng)進(jìn)化為保護(hù)蛋白質(zhì)成分免受抗原識別,而且與亞抑制濃度的抗生素接觸后,聚糖結(jié)構(gòu)改變,會進(jìn)一步增強(qiáng)鮑曼不動桿菌的毒力[17, 18]。所以,糖綴合物在鮑曼不動桿菌中具有關(guān)鍵的結(jié)構(gòu)作用,是介導(dǎo)抵御各種不利生存環(huán)境、免疫逃避和調(diào)節(jié)以及毒力的第一道防線。 鐵、錳和鋅等微量金屬元素對生命的所有領(lǐng)域都是必不可少的,也是鮑曼不動桿菌生存所必需的[19-21]。 與其他革蘭氏陰性病原體類似,鮑曼不動桿菌使用分泌蛋白來促進(jìn)環(huán)境和宿主適應(yīng)。鮑曼不動桿菌中的蛋白質(zhì)分泌系統(tǒng)對于黏附宿主細(xì)胞、介導(dǎo)肺定植和傳播到其他器官、進(jìn)行細(xì)菌競爭等都有重要作用[22-26]。 總體來說,鮑曼不動桿菌能夠在對許多細(xì)菌病原體不利的環(huán)境中持續(xù)存在的特征,為其在人體定植和隨后的感染奠定了基礎(chǔ)。 二、傳播途徑 鮑曼不動桿菌有多種傳播途徑,包括空氣、水和表面接觸。鮑曼不動桿菌是一種院內(nèi)感染常見病原體,其環(huán)境污染與干燥或潮濕地區(qū)有關(guān)[27]。另外,其存活時間也與特定菌株相關(guān),一些菌株的存活時間為4個月[28],受污染的表面和醫(yī)療設(shè)備和/或患者和醫(yī)務(wù)人員的手衛(wèi)生可能會成為常見定植部位和有效的傳播方式,其中醫(yī)務(wù)人員可充當(dāng)載體,將細(xì)菌從受污染的表面帶到患者或患者之間[29, 30]。 三、臨床表現(xiàn) 鮑曼不動桿菌感染主要表現(xiàn)為醫(yī)院獲得性肺炎,特別是在氣管插管的患者中更易發(fā)生,不動桿菌可以在導(dǎo)管上形成生物膜,直接進(jìn)入肺泡,在組織中建立感染[31, 32]。其次是血流感染。血流感染通常發(fā)生在存在中心靜脈導(dǎo)管的情況下,或者繼發(fā)于廣泛的肺炎。另外,鮑曼不動桿菌也會引起皮膚和軟組織以及手術(shù)部位的感染(如骨髓炎、心內(nèi)膜炎、腦膜炎等),以及與導(dǎo)管相關(guān)的尿路感染[33-37]。這些情況的共同點(diǎn)是解剖屏障的破壞使鮑曼不動桿菌能夠直接進(jìn)入感染部位。由鮑曼不動桿菌引起的社區(qū)獲得性感染近年也越來越多。社區(qū)獲得性感染主要發(fā)生在溫暖、潮濕的熱帶環(huán)境中,特別是在澳大利亞、大洋洲和亞洲的部分地區(qū),包括中國、泰國[38, 39]。但通常出現(xiàn)在有合并癥的患者中,包括大量吸煙、過度飲酒、糖尿病、癌癥和慢性阻塞性肺疾病患者[33, 38]。社區(qū)獲得性感染通常表現(xiàn)為急性肺炎,在極少數(shù)情況下會出現(xiàn)腦膜炎、蜂窩組織炎或原發(fā)性菌血癥[33]。在戰(zhàn)爭或自然災(zāi)害中,鮑曼不動桿菌也經(jīng)傷口、軟組織,侵入血液和骨骼造成感染[40, 41]。另外,還有鮑曼不動桿菌引起壞死性筋膜炎的報道,這些病例主要是HIV、肝硬化、實(shí)體器官移植或糖尿病等免疫功能低下的患者[42-47]。 四、診斷和治療 對于鮑曼不動桿菌感染的診斷,臨床上常采用細(xì)菌培養(yǎng)和宏基因組二代測序(mNGS)的檢測方法。痰液、肺泡灌洗液、血液、腦脊液、尿液、糞便、咽拭子、肛拭子、引流液、創(chuàng)面分泌物等多種生物標(biāo)本中均可檢出鮑曼不動桿菌。 β-內(nèi)酰胺類抗生素是鮑曼不動桿菌感染的首選抗菌藥物。舒巴坦用于抑制大多數(shù)病原體的β-內(nèi)酰胺酶,對不動桿菌具有直接的抗菌活性。隨著舒巴坦耐藥率的不斷增加,碳青霉烯類藥物成為重要的治療選擇。β-內(nèi)酰胺類抗生素療效的最佳預(yù)測指標(biāo)是血清藥物濃度保持在最低抑制濃度(MIC)以上的時間。所以,對于耐藥病原體,延長碳青霉烯類藥物的輸注可以最大限度地延長高于MIC的時間,從而達(dá)到最優(yōu)化的治療效果[48-50]。蒙特卡羅模擬對不動桿菌屬的風(fēng)險分析顯示,每8小時給予1 g美羅培南(維持3 h輸注)將獲得最佳的殺菌率。與快速輸注相比,延長碳青霉烯輸注時間可降低死亡率,且沒有任何證據(jù)表明耐藥性出現(xiàn)率增加。然而,延長輸注時間,藥物藥代動力學(xué)顯示藥物峰值水平下降[49, 51]。因此,對于MIC為4~16 g/ml的分離株,應(yīng)延長輸注時間,但對于MIC較高的分離株(≥16 g/ml),建議間歇給藥,以達(dá)到高于MIC的峰值水平。 氟喹諾酮類藥物和氨基糖苷類藥物不作為經(jīng)驗(yàn)性治療的首選,因?yàn)轷U曼不動桿菌對這兩種藥物的耐藥率都很高[52, 53]。在敏感性允許的情況下,氨基糖苷類藥物可能是一種潛在的治療選擇[54]。 治療耐藥鮑曼不動桿菌的一種選擇藥物是替加環(huán)素。雖然替加環(huán)素對鮑曼不動桿菌菌株的MIC(2 g/ml)通常較低,但該藥物的血清濃度也較低,即使MIC為2 g/ml,在使用替加環(huán)素治療時結(jié)果可能較差,如增加死亡率,無法清除菌血癥和發(fā)生突破性菌血癥[55]。一項(xiàng)系統(tǒng)評價和薈萃分析(非特定于不動桿菌感染)也發(fā)現(xiàn),替加環(huán)素治療會導(dǎo)致較高的住院死亡率、較低的微生物根除率和住院時間延長的趨勢[56]。 目前,多黏菌素通常是耐藥鮑曼不動桿菌的最后治療選擇。研究發(fā)現(xiàn),多黏菌素在肺泡內(nèi)的藥物濃度相對較差,靜脈輸注2小時后采集的支氣管肺泡灌洗標(biāo)本中,尚未檢測到多黏菌素[57]。且多黏菌素具有較明顯的腎毒性和神經(jīng)毒性,所以霧化多黏菌素被用于臨床治療中。相較于靜脈用藥,霧化多黏菌素可能會在肺部達(dá)到非常高的濃度,最大限度地減少全身暴露和毒性,同時,鮑曼不動桿菌肺炎患者得到了良好的治療效果[58, 59]。但需要注意,多黏菌素可能對肺組織有毒并誘導(dǎo)支氣管痙攣,并且累積劑量依然有發(fā)生腎毒性的可能[60, 61]。 事實(shí)上,鮑曼不動桿菌對替加環(huán)素和多黏菌素的耐藥率也逐年上升,聯(lián)合治療成為改善治療結(jié)果的選擇。2012年《中國鮑曼不動桿菌感染診治與防控專家共識》指出,對于MDR,可選用舒巴坦或碳青霉烯類藥物聯(lián)合氟喹諾酮類或氨基糖苷類藥物。對于廣泛耐藥(XDR),可選擇舒巴坦聯(lián)合下述任何一種:米諾環(huán)素(或多西環(huán)素),多黏菌素,氨基糖苷類,碳青霉烯類抗生素;或多黏菌素聯(lián)合下述任何一種:舒巴坦,碳青霉烯類抗生素;抑或替加環(huán)素聯(lián)合下述任何一種:舒巴坦,碳青霉烯類,多黏菌素,喹諾酮類,氨基糖苷類抗生素;甚至三藥聯(lián)合:舒巴坦+多西環(huán)素+碳青霉烯類抗生素,或者亞胺培南+利福平+多黏菌素或妥布霉素[67]。在所有聯(lián)合方案中,最合理的一種可能是多黏菌素聯(lián)合碳青霉烯類,在多項(xiàng)體外研究中均發(fā)現(xiàn)其具有協(xié)同作用[62-66],這種協(xié)同作用尤其適用于對碳青霉烯類具有中等耐藥性的分離株(例如碳青霉烯類MIC為4~16 g/ml)[63]。在非菌血癥XDR不動桿菌肺炎病例中,作為碳青霉烯類或其他藥物全身治療的輔助手段,可以考慮添加吸入性多黏菌素。 最后,目前迫切需要對聯(lián)合治療進(jìn)行前瞻性隨機(jī)研究,進(jìn)一步確定聯(lián)合方案是否有用,聯(lián)合治療方案是否優(yōu)于單一治療,以便指導(dǎo)今后如何選擇藥物治療。 [1] Magill S S, Edwards J R, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections[J]. N Engl J Med, 2014, 370(13):1198-1208. [2] Lob S H, Hoban D J, Sahm D F, et al. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii[J]. Int J Antimicrob Agents, 2016, 47(4):317-323. [3] Giammanco A, Calà C, Fasciana T, et al. Global Assessment of the Activity of Tigecycline against Multidrug-Resistant Gram-Negative Pathogens between 2004 and 2014 as Part of the Tigecycline Evaluation and Surveillance Trial[J]. mSphere, 2017. 2(1):e00310-16. [4] Rolain J M, Diene S M, Kempf M, et al. Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant Acinetobacter baumannii isolate from Marseille, France[J]. Antimicrob Agents Chemother, 2013, 57(1):592-596. [5] Baraldi E, Lindahl O, Savic M, et al. Antibiotic Pipeline Coordinators[J]. J Law Med Ethics, 2018, 46(1_suppl):25-31. [6] Giannouli M, Antunes L C S, Marchetti V, et al. Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages Ⅰ-Ⅲ and to the emerging genotypes ST25 and ST78[J]. BMC Infect Dis, 2013, 13:282. [7] Antunes L C S, Imperi F, Carattoli A, et al. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity[J]. PLoS One, 2011, 6(8):e22674. [8] Espinal P, Martí S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces[J]. J Hosp Infect, 2012, 80(1):56-60. [9] Hassan K A, Jackson S M, Penesyan A, et al. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins[J]. Proc Natl Acad Sci U S A, 2013, 110(50):20254-20259. [10] Thompson M G, Black C C, Pavlicek R L, et al. Validation of a novel murine wound model of Acinetobacter baumannii infection[J]. Antimicrob Agents Chemother, 2014, 58(3):1332-1342. [11] Greene C, Wu J, Rickard A H, et al. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces[J]. Lett Appl Microbiol, 2016, 63(4):233-239. [12] Vijayakumar S, Rajenderan S, Laishram S, et al. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates[J]. Front Public Health, 2016, 4:105. [13] Lees-Miller R G, Iwashkiw J A, Scott N E, et al. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii[J]. Mol Microbiol, 2013, 89(5):816-830. [14] Iwashkiw J A, Seper A, Weber B S, et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation[J]. PLoS Pathog, 2012, 8(6):e1002758. [15] Adams M D, Nickel G C, Bajaksouzian S, et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system[J]. Antimicrob Agents Chemother, 2009, 53(9):3628-3634. [16] Beceiro A, Llobet E, Aranda J, et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system[J]. Antimicrob Agents Chemother, 2011, 55(7):3370-3379. [17] Piepenbrink K H, Lillehoj E, Harding C M, et al. Structural Diversity in the Type Ⅳ Pili of Multidrug-resistant Acinetobacter[J]. J Biol Chem, 2016, 291(44):22924-22935. [18] Geisinger E, Isberg R R. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii[J]. PLoS Pathog, 2015, 11(2):e1004691. [19] Antunes L C S, Imperi F, Towner K J, et al. Genome-assisted identification of putative iron-utilization genes in Acinetobacter baumannii and their distribution among a genotypically diverse collection of clinical isolates[J]. Res Microbiol, 2011,162(3):279-284. [20] Zackular J P, Chazin W J, Skaar E P. Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface[J]. J Biol Chem, 2015, 290(31):18991-18998. [21] Juttukonda L J, Chazin W J, Skaar E P. Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation[J]. mBio, 2016, 7(5):e01475-16. [22] Bentancor L V, Camacho-Peiro A, Bozkurt-Guzel C, et al. Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii[J]. J Bacteriol, 2012, 194(15):3950-3960. [23] Weber B S , Miyata S T, Iwashkiw J A, et al. Genomic and functional analysis of the type Ⅵ secretion system in Acinetobacter[J]. PLoS One, 2013, 8(1):e55142. [24] Carruthers M D, Nicholson P A, Tracy E N, et al. Acinetobacter baumannii utilizes a type Ⅵ secretion system for bacterial competition[J]. PLoS One, 2013, 8(3):e59388. [25] Harding C M, Kinsella R L, Palmer L D, et al. Medically Relevant Acinetobacter Species Require a Type II Secretion System and Specific Membrane-Associated Chaperones for the Export of Multiple Substrates and Full Virulence[J]. PLoS Pathog, 2016, 12(1):e1005391. [26] Tilley D, Law R, Warren S, et al. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation[J]. FEMS Microbiol Lett, 2014, 356(1):53-61. [27] Cheon S, Kim M J, Yun S J, et al. Controlling endemic multidrug-resistant Acinetobacter baumannii in Intensive Care Units using antimicrobial stewardship and infection control[J]. Korean J Intern Med, 2016, 31(2):367-374. [28] Wendt C, Dietze B, Dietz E, et al. Survival of Acinetobacter baumannii on dry surfaces[J]. J Clin Microbiol, 1997, 35(6):1394-1397. [29] Peleg A Y, Seifert H, Paterson D L. Acinetobacter baumannii: emergence of a successful pathogen[J]. Clin Microbiol Rev, 2008, 21(3):538-582. [30] Tacconelli E, Cataldo M A, Dancer S J, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients[J]. Clin Microbiol Infect, 2014, 20 Suppl 1:1-55. [31] Raad I I, Mohamed J A, Reitzel R A, et al. The prevention of biofilm colonization by multidrug-resistant pathogens that cause ventilator-associated pneumonia with antimicrobial-coated endotracheal tubes[J]. Biomaterials, 2011, 32(11):2689-2694. [32] Gil-Perotin S, Ramirez P, Marti V, et al. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept[J]. Crit Care, 2012, 16(3):R93. [33] Joly-Guillou M-L. Clinical impact and pathogenicity of Acinetobacter[J]. Clin Microbiol Infect, 2005, 11(11):868-873. [34] Sievert D M, Ricks P, Edwards J R, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010[J]. Infect Control Hosp Epidemiol, 2013, 34(1):1-14. [35] Davis K A, Moran K A, McAllister C K, et al. Multidrug-resistant Acinetobacter extremity infections in soldiers[J]. Emerg Infect Dis, 2005, 11(8):1218-1224. [36] Yun H C, Branstetter J G, Murray C K. Osteomyelitis in military personnel wounded in Iraq and Afghanistan[J]. J Trauma, 2008, 64(2 Suppl):S163-S168; discussion S168. [37] de Carvalho V C, de Oliveira P R D, Dal-Paz K, et al. Gram-negative osteomyelitis: clinical and microbiological profile[J]. Braz J Infect Dis, 2012, 16(1):63-67. [38] Falagas M E, Karveli E A, Kelesidis I, et al. Community-acquired Acinetobacter infections[J]. Eur J Clin Microbiol Infect Dis, 2007, 26(12):857-868. [39] Peng C, Zong Z, Fan H. Acinetobacter baumannii isolates associated with community-acquired pneumonia in West China[J]. Clin Microbiol Infect, 2012, 18(12):E491-E493. [40] Centers for Disease Control and Prevention (CDC). Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002-2004[J]. MMWR Morb Mortal Wkly Rep, 2004, 53(45):1063-1066. [41] Oncül O, Keskin O, Acar H V, et al. Hospital-acquired infections following the 1999 Marmara earthquake[J]. J Hosp Infect, 2002, 51(1):47-51. [42] Nonaka Y, Nagae M, Omae T, et al. Community-acquired necrotizing fasciitis caused by Acinetobacter calcoaceticus: a case report and literature review[J]. J Infect Chemother, 2014, 20(5):330-335. [43] Sinha N, Niazi M, Lvovsky D. A fatal case of multidrug resistant acinetobacter necrotizing fasciitis: the changing scary face of nosocomial infection[J]. Case Rep Infect Dis, 2014, 2014:705279. [44] Corradino B, Toia F, di Lorenzo S, et al. A difficult case of necrotizing fasciitis caused by Acinetobacter baumannii[J]. Int J Low Extrem Wounds, 2010, 9(4):152-154. [45] Gouraud A, Bernard N, Millaret A, et al. Multidrug-resistant Acinetobacter baumannii causing necrotizing fasciitis in a pancreas-kidney transplant recipient: a case report[J]. Transplantation, 2012, 94(6):e37-e38. [46] Charnot-Katsikas A, Dorafshar A H, Aycock J K, et al. Two cases of necrotizing fasciitis due to Acinetobacter baumannii[J]. J Clin Microbiol, 2009, 47(1):258-263. [47] Sullivan D R, Shields J, Netzer G. Fatal case of multi-drug resistant Acinetobacter baumannii necrotizing fasciitis[J]. Am Surg, 2010, 76(6):651-653. [48] Mattoes H M, Kuti J L, Drusano G L, et al. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem[J]. Clin Ther, 2004, 26(8):1187-1198. [49] Lomaestro B M, Drusano G L. Pharmacodynamic evaluation of extending the administration time of meropenem using a Monte Carlo simulation[J]. Antimicrob Agents Chemother, 2005, 49(1):461-463. [50] Lee L S, Kinzig-Schippers M, Nafziger A N, et al. Comparison of 30-min and 3-h infusion regimens for imipenem/cilastatin and for meropenem evaluated by Monte Carlo simulation[J]. Diagn Microbiol Infect Dis, 2010, 68(3):251-258. [51] Falagas M E, Tansarli G S, Ikawa K, et al. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis[J]. Clin Infect Dis, 2013, 56(2):272-282. [52] Vila J, Ruiz J, Go?i P, et al. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii[J]. J Antimicrob Chemother, 1997, 39(6):757-762. [53] Hujer K M, Hujer A M, Endimiani A, et al. Rapid determination of quinolone resistance in Acinetobacter spp[J]. J Clin Microbiol, 2009, 47(5):1436-1442. [54] Fishbain J, Peleg A Y. Treatment of Acinetobacter infections[J]. Clin Infect Dis, 2010, 51(1):79-84. [55] Gordon N C, Wareham D W. A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline[J]. J Antimicrob Chemother, 2009, 63(4):775-780. [56] Ni W, Han Y, Zhao J, et al. Tigecycline treatment experience against multidrug-resistant Acinetobacter baumannii infections: a systematic review and meta-analysis[J]. Int J Antimicrob Agents, 2016, 47(2):107-116. [57] Imberti R, Cusato M, Villani P, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration[J]. Chest, 2010, 138(6):1333-1339. [58] Kuo S-C, Lee Y-T, Yang S-P, et al. Eradication of multidrug-resistant Acinetobacter baumannii from the respiratory tract with inhaled colistin methanesulfonate: a matched case-control study[J]. Clin Microbiol Infect, 2012, 18(9):870-876. [59] Korbila I P, Michalopoulos A, Rafailidis P I, et al. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study[J]. Clin Microbiol Infect, 2010, 16(8):1230-1236. [60] Lu Q, Luo R, Bodin L, et al. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii[J]. Anesthesiology, 2012, 117(6):1335-1347. [61] Choi H K, Kim Y K, Kim H Y, et al. Inhaled colistin for treatment of pneumonia due to colistin-only-susceptible Acinetobacter baumannii[J]. Yonsei Med J, 2014, 55(1):118-125. [62] Zusman O, Avni T, Leibovici L, et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems[J]. Antimicrob Agents Chemother, 2013, 57(10):5104-5111. [63] Oleksiuk L M, Nguyen M H, Press E G, et al. In vitro responses of Acinetobacter baumannii to two- and three-drug combinations following exposure to colistin and doripenem[J]. Antimicrob Agents Chemother, 2014, 58(2):1195-1199. [64] Batirel A,Balkan I I, Karabay O, et al. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections[J]. Eur J Clin Microbiol Infect Dis, 2014, 33(8):1311-1322. [65] Dinc G, Demiraslan H, Elmali F, et al. Antimicrobial efficacy of doripenem and its combinations with sulbactam, amikacin, colistin, tigecycline in experimental sepsis of carbapenem-resistant Acinetobacter baumannii[J]. New Microbiol, 2015, 38(1):67-73. [66] Le Minh V, Nhu N T K, Phat V V, et al. In vitro activity of colistin in antimicrobial combination against carbapenem-resistant Acinetobacter baumannii isolated from patients with ventilator-associated pneumonia in Vietnam[J]. J Med Microbiol, 2015, 64(10):1162-1169. [67] 陳佰義, 何禮賢, 胡必杰, 等. 中國鮑曼不動桿菌感染診治與防控專家共識[J]. 中華醫(yī)學(xué)雜志, 2012, 92(2):76-85.
|
|