一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

Hyperelastic material

 小白人哈 2017-05-16
Continuum mechanics
Laws[show]
Scientists[show]
Stress-strain curves for various hyperelastic material models.

A hyperelastic or Green elastic material[1] is a type of constitutive model for ideally elastic material for which the stress-strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material.

For many materials, linear elastic models do not accurately describe the observed material behaviour. The most common example of this kind of material is rubber, whose stress-strain relationship can be defined as non-linearly elastic, isotropic, incompressible and generally independent of strain rate. Hyperelasticity provides a means of modeling the stress-strain behavior of such materials.[2] The behavior of unfilled, vulcanized elastomers often conforms closely to the hyperelastic ideal. Filled elastomers and biological tissues[3][4] are also often modeled via the hyperelastic idealization.

Ronald Rivlin and Melvin Mooney developed the first hyperelastic models, the Neo-Hookean and Mooney–Rivlin solids. Many other hyperelastic models have since been developed. Other widely used hyperelastic material models include the Ogden model and the Arruda–Boyce model.

Hyperelastic material models[edit]

Saint Venant–Kirchhoff model[edit]

The simplest hyperelastic material model is the Saint Venant–Kirchhoff model which is just an extension of the linear elastic material model to the nonlinear regime. This model has the form

{\displaystyle {\boldsymbol {S}}=\lambda ~{\text{tr}}({\boldsymbol {E}}){\boldsymbol {\mathit {1}}}+2\mu {\boldsymbol {E}}}

where {\displaystyle {\boldsymbol {S}}} is the second Piola–Kirchhoff stress and {\displaystyle {\boldsymbol {E}}} is the Lagrangian Green strain, {\displaystyle \lambda } and {\displaystyle \mu } are the Lamé constants, and {\displaystyle {\boldsymbol {\mathit {1}}}} is the second order unit tensor.

The strain-energy density function for the St. Venant–Kirchhoff model is

{\displaystyle W({\boldsymbol {E}})={\frac {\lambda }{2}}[{\text{tr}}({\boldsymbol {E}})]^{2}+\mu {\text{tr}}({\boldsymbol {E}}^{2})}

and the second Piola–Kirchhoff stress can be derived from the relation

{\displaystyle {\boldsymbol {S}}={\cfrac {\partial W}{\partial {\boldsymbol {E}}}}~.}

Classification of hyperelastic material models[edit]

Hyperelastic material models can be classified as:

1) phenomenological descriptions of observed behavior

2) mechanistic models deriving from arguments about underlying structure of the material

3) hybrids of phenomenological and mechanistic models

Generally, a hyperelastic model should satisfy the Drucker stability criterion. Some hyperelastic models satisfy the Valanis-Landel hypothesis which states that the strain energy function can be separated into the sum of separate functions of the principal stretches {\displaystyle (\lambda _{1},\lambda _{2},\lambda _{3})} :

{\displaystyle W=f(\lambda _{1})+f(\lambda _{2})+f(\lambda _{3})\,.}

Stress-strain relations[edit]

Compressible hyperelastic materials[edit]

First Piola–Kirchhoff stress[edit]

If {\displaystyle W({\boldsymbol {F}})} is the strain energy density function, the 1st Piola–Kirchhoff stress tensor can be calculated for a hyperelastic material as

{\displaystyle {\boldsymbol {P}}={\frac {\partial W}{\partial {\boldsymbol {F}}}}\qquad {\text{or}}\qquad P_{iK}={\frac {\partial W}{\partial F_{iK}}}.}

where {\displaystyle {\boldsymbol {F}}} is the deformation gradient. In terms of the Lagrangian Green strain ( {\displaystyle {\boldsymbol {E}}} )

{\displaystyle {\boldsymbol {P}}={\boldsymbol {F}}\cdot {\frac {\partial W}{\partial {\boldsymbol {E}}}}\qquad {\text{or}}\qquad P_{iK}=F_{iL}~{\frac {\partial W}{\partial E_{LK}}}~.}

In terms of the right Cauchy–Green deformation tensor ( {\displaystyle {\boldsymbol {C}}} )

{\displaystyle {\boldsymbol {P}}=2~{\boldsymbol {F}}\cdot {\frac {\partial W}{\partial {\boldsymbol {C}}}}\qquad {\text{or}}\qquad P_{iK}=2~F_{iL}~{\frac {\partial W}{\partial C_{LK}}}~.}

Second Piola–Kirchhoff stress[edit]

If {\displaystyle {\boldsymbol {S}}} is the second Piola–Kirchhoff stress tensor then

{\displaystyle {\boldsymbol {S}}={\boldsymbol {F}}^{-1}\cdot {\frac {\partial W}{\partial {\boldsymbol {F}}}}\qquad {\text{or}}\qquad S_{IJ}=F_{Ik}^{-1}{\frac {\partial W}{\partial F_{kJ}}}~.}

In terms of the Lagrangian Green strain

{\displaystyle {\boldsymbol {S}}={\frac {\partial W}{\partial {\boldsymbol {E}}}}\qquad {\text{or}}\qquad S_{IJ}={\frac {\partial W}{\partial E_{IJ}}}~.}

In terms of the right Cauchy–Green deformation tensor

{\displaystyle {\boldsymbol {S}}=2~{\frac {\partial W}{\partial {\boldsymbol {C}}}}\qquad {\text{or}}\qquad S_{IJ}=2~{\frac {\partial W}{\partial C_{IJ}}}~.}

The above relation is also known as the Doyle-Ericksen formula in the material configuration.

Cauchy stress[edit]

Similarly, the Cauchy stress is given by

{\displaystyle {\boldsymbol {\sigma }}={\cfrac {1}{J}}~{\cfrac {\partial W}{\partial {\boldsymbol {F}}}}\cdot {\boldsymbol {F}}^{T}~;~~J:=\det {\boldsymbol {F}}\qquad {\text{or}}\qquad \sigma _{ij}={\cfrac {1}{J}}~{\cfrac {\partial W}{\partial F_{iK}}}~F_{jK}~.}

In terms of the Lagrangian Green strain

{\displaystyle {\boldsymbol {\sigma }}={\cfrac {1}{J}}~{\boldsymbol {F}}\cdot {\cfrac {\partial W}{\partial {\boldsymbol {E}}}}\cdot {\boldsymbol {F}}^{T}\qquad {\text{or}}\qquad \sigma _{ij}={\cfrac {1}{J}}~F_{iK}~{\cfrac {\partial W}{\partial E_{KL}}}~F_{jL}~.}

In terms of the right Cauchy–Green deformation tensor

{\displaystyle {\boldsymbol {\sigma }}={\cfrac {2}{J}}~{\boldsymbol {F}}\cdot {\cfrac {\partial W}{\partial {\boldsymbol {C}}}}\cdot {\boldsymbol {F}}^{T}\qquad {\text{or}}\qquad \sigma _{ij}={\cfrac {2}{J}}~F_{iK}~{\cfrac {\partial W}{\partial C_{KL}}}~F_{jL}~.}

The above expressions are valid even for anisotropic media (in which case, the potential function is understood to depend implicitly on reference directional quantities such as initial fiber orientations). In the special case of isotropy, the Cauchy stress can be expressed in terms of the left Cauchy-Green deformation tensor as follows:[5]

{\displaystyle {\boldsymbol {\sigma }}={\cfrac {2}{J}}~{\boldsymbol {B}}\cdot {\cfrac {\partial W}{\partial {\boldsymbol {B}}}}\qquad {\text{or}}\qquad \sigma _{ij}={\cfrac {2}{J}}~B_{ik}~{\cfrac {\partial W}{\partial B_{kj}}}~.}

Incompressible hyperelastic materials[edit]

For an incompressible material {\displaystyle J:=\det {\boldsymbol {F}}=1} . The incompressibility constraint is therefore {\displaystyle J-1=0} . To ensure incompressibility of a hyperelastic material, the strain-energy function can be written in form:

{\displaystyle W=W({\boldsymbol {F}})-p~(J-1)}

where the hydrostatic pressure {\displaystyle p} functions as a Lagrangian multiplier to enforce the incompressibility constraint. The 1st Piola–Kirchhoff stress now becomes

{\displaystyle {\boldsymbol {P}}=-p~J{\boldsymbol {F}}^{-T}+{\frac {\partial W}{\partial {\boldsymbol {F}}}}=-p~{\boldsymbol {F}}^{-T}+{\boldsymbol {F}}\cdot {\frac {\partial W}{\partial {\boldsymbol {E}}}}=-p~{\boldsymbol {F}}^{-T}+2~{\boldsymbol {F}}\cdot {\frac {\partial W}{\partial {\boldsymbol {C}}}}~.}

This stress tensor can subsequently be converted into any of the other conventional stress tensors, such as the Cauchy Stress tensor which is given by

{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {P}}\cdot {\boldsymbol {F}}^{T}=-p~{\boldsymbol {\mathit {1}}}+{\frac {\partial W}{\partial {\boldsymbol {F}}}}\cdot {\boldsymbol {F}}^{T}=-p~{\boldsymbol {\mathit {1}}}+{\boldsymbol {F}}\cdot {\frac {\partial W}{\partial {\boldsymbol {E}}}}\cdot {\boldsymbol {F}}^{T}=-p~{\boldsymbol {\mathit {1}}}+2~{\boldsymbol {F}}\cdot {\frac {\partial W}{\partial {\boldsymbol {C}}}}\cdot {\boldsymbol {F}}^{T}~.}

Expressions for the Cauchy stress[edit]

Compressible isotropic hyperelastic materials[edit]

For isotropic hyperelastic materials, the Cauchy stress can be expressed in terms of the invariants of the left Cauchy–Green deformation tensor (or right Cauchy–Green deformation tensor). If the strain energy density function is {\displaystyle W({\boldsymbol {F}})={\hat {W}}(I_{1},I_{2},I_{3})={\bar {W}}({\bar {I}}_{1},{\bar {I}}_{2},J)={\tilde {W}}(\lambda _{1},\lambda _{2},\lambda _{3})} , then

{\displaystyle {\begin{aligned}{\boldsymbol {\sigma }}&={\cfrac {2}{\sqrt {I_{3}}}}\left[\left({\cfrac {\partial {\hat {W}}}{\partial I_{1}}}+I_{1}~{\cfrac {\partial {\hat {W}}}{\partial I_{2}}}\right){\boldsymbol {B}}-{\cfrac {\partial {\hat {W}}}{\partial I_{2}}}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}\right]+2{\sqrt {I_{3}}}~{\cfrac {\partial {\hat {W}}}{\partial I_{3}}}~{\boldsymbol {\mathit {1}}}\\&={\cfrac {2}{J}}\left[{\cfrac {1}{J^{2/3}}}\left({\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{1}}}+{\bar {I}}_{1}~{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{2}}}\right){\boldsymbol {B}}-{\cfrac {1}{J^{4/3}}}~{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{2}}}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}\right]\\&\qquad \qquad +\left[{\cfrac {\partial {\bar {W}}}{\partial J}}-{\cfrac {2}{3J}}\left({\bar {I}}_{1}~{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{1}}}+2~{\bar {I}}_{2}~{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{2}}}\right)\right]~{\boldsymbol {\mathit {1}}}\\&={\cfrac {2}{J}}\left[\left({\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{1}}}+{\bar {I}}_{1}~{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{2}}}\right){\bar {\boldsymbol {B}}}-{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{2}}}~{\bar {\boldsymbol {B}}}\cdot {\bar {\boldsymbol {B}}}\right]+\left[{\cfrac {\partial {\bar {W}}}{\partial J}}-{\cfrac {2}{3J}}\left({\bar {I}}_{1}~{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{1}}}+2~{\bar {I}}_{2}~{\cfrac {\partial {\bar {W}}}{\partial {\bar {I}}_{2}}}\right)\right]~{\boldsymbol {\mathit {1}}}\\&={\cfrac {\lambda _{1}}{\lambda _{1}\lambda _{2}\lambda _{3}}}~{\cfrac {\partial {\tilde {W}}}{\partial \lambda _{1}}}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {\lambda _{2}}{\lambda _{1}\lambda _{2}\lambda _{3}}}~{\cfrac {\partial {\tilde {W}}}{\partial \lambda _{2}}}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+{\cfrac {\lambda _{3}}{\lambda _{1}\lambda _{2}\lambda _{3}}}~{\cfrac {\partial {\tilde {W}}}{\partial \lambda _{3}}}~\mathbf {n} _{3}\otimes \mathbf {n} _{3}\end{aligned}}}

(See the page on the left Cauchy–Green deformation tensor for the definitions of these symbols).

[show]Proof 1:
[show]Proof 2:
[show]Proof 3:

Incompressible isotropic hyperelastic materials[edit]

For incompressible isotropic hyperelastic materials, the strain energy density function is {\displaystyle W({\boldsymbol {F}})={\hat {W}}(I_{1},I_{2})} . The Cauchy stress is then given by

{\displaystyle {\begin{aligned}{\boldsymbol {\sigma }}&=-p~{\boldsymbol {\mathit {1}}}+2\left[\left({\cfrac {\partial {\hat {W}}}{\partial I_{1}}}+I_{1}~{\cfrac {\partial {\hat {W}}}{\partial I_{2}}}\right){\boldsymbol {B}}-{\cfrac {\partial {\hat {W}}}{\partial I_{2}}}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}\right]\\&=-p~{\boldsymbol {\mathit {1}}}+2\left[\left({\cfrac {\partial W}{\partial {\bar {I}}_{1}}}+I_{1}~{\cfrac {\partial W}{\partial {\bar {I}}_{2}}}\right)~{\bar {\boldsymbol {B}}}-{\cfrac {\partial W}{\partial {\bar {I}}_{2}}}~{\bar {\boldsymbol {B}}}\cdot {\bar {\boldsymbol {B}}}\right]\\&=-p~{\boldsymbol {\mathit {1}}}+\lambda _{1}~{\cfrac {\partial W}{\partial \lambda _{1}}}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+\lambda _{2}~{\cfrac {\partial W}{\partial \lambda _{2}}}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\lambda _{3}~{\cfrac {\partial W}{\partial \lambda _{3}}}~\mathbf {n} _{3}\otimes \mathbf {n} _{3}\end{aligned}}}

where {\displaystyle p} is an undetermined pressure. In terms of stress differences

{\displaystyle \sigma _{11}-\sigma _{33}=\lambda _{1}~{\cfrac {\partial W}{\partial \lambda _{1}}}-\lambda _{3}~{\cfrac {\partial W}{\partial \lambda _{3}}}~;~~\sigma _{22}-\sigma _{33}=\lambda _{2}~{\cfrac {\partial W}{\partial \lambda _{2}}}-\lambda _{3}~{\cfrac {\partial W}{\partial \lambda _{3}}}}

If in addition {\displaystyle I_{1}=I_{2}} , then

{\displaystyle {\boldsymbol {\sigma }}=2{\cfrac {\partial W}{\partial I_{1}}}~{\boldsymbol {B}}-p~{\boldsymbol {\mathit {1}}}~.}

If {\displaystyle \lambda _{1}=\lambda _{2}} , then

{\displaystyle \sigma _{11}-\sigma _{33}=\sigma _{22}-\sigma _{33}=\lambda _{1}~{\cfrac {\partial W}{\partial \lambda _{1}}}-\lambda _{3}~{\cfrac {\partial W}{\partial \lambda _{3}}}}

Consistency with linear elasticity[edit]

Consistency with linear elasticity is often used to determine some of the parameters of hyperelastic material models. These consistency conditions can be found by comparing Hooke's law with linearized hyperelasticity at small strains.

Consistency conditions for isotropic hyperelastic models[edit]

For isotropic hyperelastic materials to be consistent with isotropic linear elasticity, the stress-strain relation should have the following form in the infinitesimal strain limit:

{\displaystyle {\boldsymbol {\sigma }}=\lambda ~\mathrm {tr} ({\boldsymbol {\varepsilon }})~{\boldsymbol {\mathit {1}}}+2\mu {\boldsymbol {\varepsilon }}}

where {\displaystyle \lambda ,\mu } are the Lame constants. The strain energy density function that corresponds to the above relation is[1]

{\displaystyle W={\tfrac {1}{2}}\lambda ~[\mathrm {tr} ({\boldsymbol {\varepsilon }})]^{2}+\mu ~\mathrm {tr} ({\boldsymbol {\varepsilon }}^{2})}

For an incompressible material {\displaystyle \mathrm {tr} ({\boldsymbol {\varepsilon }})=0} and we have

{\displaystyle W=\mu ~\mathrm {tr} ({\boldsymbol {\varepsilon }}^{2})}

For any strain energy density function {\displaystyle W(\lambda _{1},\lambda _{2},\lambda _{3})} to reduce to the above forms for small strains the following conditions have to be met[1]

{\displaystyle {\begin{aligned}&W(1,1,1)=0~;~~{\cfrac {\partial W}{\partial \lambda _{i}}}(1,1,1)=0\\&{\cfrac {\partial ^{2}W}{\partial \lambda _{i}\partial \lambda _{j}}}(1,1,1)=\lambda +2\mu \delta _{ij}\end{aligned}}}

If the material is incompressible, then the above conditions may be expressed in the following form.

{\displaystyle {\begin{aligned}&W(1,1,1)=0\\&{\cfrac {\partial W}{\partial \lambda _{i}}}(1,1,1)={\cfrac {\partial W}{\partial \lambda _{j}}}(1,1,1)~;~~{\cfrac {\partial ^{2}W}{\partial \lambda _{i}^{2}}}(1,1,1)={\cfrac {\partial ^{2}W}{\partial \lambda _{j}^{2}}}(1,1,1)\\&{\cfrac {\partial ^{2}W}{\partial \lambda _{i}\partial \lambda _{j}}}(1,1,1)=\mathrm {independentof} ~i,j\neq i\\&{\cfrac {\partial ^{2}W}{\partial \lambda _{i}^{2}}}(1,1,1)-{\cfrac {\partial ^{2}W}{\partial \lambda _{i}\partial \lambda _{j}}}(1,1,1)+{\cfrac {\partial W}{\partial \lambda _{i}}}(1,1,1)=2\mu ~~(i\neq j)\end{aligned}}}

These conditions can be used to find relations between the parameters of a given hyperelastic model and shear and bulk moduli.

Consistency conditions for incompressible {\displaystyle I_{1}} based rubber materials[edit]

Many elastomers are modeled adequately by a strain energy density function that depends only on {\displaystyle I_{1}} . For such materials we have {\displaystyle W=W(I_{1})} . The consistency conditions for incompressible materials for {\displaystyle I_{1}=3,\lambda _{i}=\lambda _{j}=1} may then be expressed as

{\displaystyle W(I_{1}){\biggr |}_{I_{1}=3}=0\quad {\text{and}}\quad {\cfrac {\partial W}{\partial I_{1}}}{\biggr |}_{I_{1}=3}={\frac {\mu }{2}}\,.}

The second consistency condition above can be derived by noting that

{\displaystyle {\cfrac {\partial W}{\partial \lambda _{i}}}={\cfrac {\partial W}{\partial I_{1}}}{\cfrac {\partial I_{1}}{\partial \lambda _{i}}}=2\lambda _{i}{\cfrac {\partial W}{\partial I_{1}}}\quad {\text{and}}\quad {\cfrac {\partial ^{2}W}{\partial \lambda _{i}\partial \lambda _{j}}}=2\delta _{ij}{\cfrac {\partial W}{\partial I_{1}}}+4\lambda _{i}\lambda _{j}{\cfrac {\partial ^{2}W}{\partial I_{1}^{2}}}\,.}

These relations can then be substituted into the consistency condition for isotropic incompressible hyperelastic materials.

References[edit]

  1. ^ Jump up to: a b c d R.W. Ogden, 1984, Non-Linear Elastic Deformations, ISBN 0-486-69648-0, Dover.
  2. Jump up ^ Muhr, A. H. (2005). Modeling the stress-strain behavior of rubber. Rubber chemistry and technology, 78(3), 391-425. [1]
  3. Jump up ^ Hao Gao et al., "A finite strain nonlinear human mitral valve model with fluid-structure interaction", Int J Numer Method Biomed Eng. 2014 Dec; 30(12): 1597–1613.
  4. Jump up ^ Fei Jia et al., "Morphoelasticity in the development of brown alga Ectocarpus siliculosus: from cell rounding to branching", J R Soc Interface. 2017 Feb; 14(127): 20160596.
  5. Jump up ^ Y. Basar, 2000, Nonlinear continuum mechanics of solids, Springer, p. 157.
  6. Jump up ^ Fox & Kapoor, Rates of change of eigenvalues and eigenvectors, AIAA Journal, 6 (12) 2426–2429 (1968)
  7. Jump up ^ Friswell MI. The derivatives of repeated eigenvalues and their associated eigenvectors. Journal of Vibration and Acoustics (ASME) 1996; 118:390–397.

See also[edit]

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多

    久久久精品区二区三区| 欧美二区视频在线观看| 国产精品亚洲一级av第二区 | 色播五月激情五月婷婷| 日韩精品免费一区二区三区| 国产精品免费无遮挡不卡视频| 亚洲综合精品天堂夜夜| 69老司机精品视频在线观看| 午夜精品国产一区在线观看| 91精品视频免费播放| 香港国产三级久久精品三级| 最新日韩精品一推荐日韩精品| 中文字幕一二区在线观看| 色哟哟国产精品免费视频| 国产精品午夜小视频观看| 国产精品美女午夜视频| 国产成人精品午夜福利av免费| 色狠狠一区二区三区香蕉蜜桃| 亚洲国产av一二三区| 国产在线不卡中文字幕| 国产在线一区中文字幕| 日韩国产传媒在线精品| 欧美加勒比一区二区三区| 免费在线播放一区二区| 亚洲在线观看福利视频| 久久99热成人网不卡| 能在线看的视频你懂的| 国产91人妻精品一区二区三区| 最近的中文字幕一区二区| 99久久精品午夜一区二区| 日本淫片一区二区三区| 亚洲精品欧美精品日韩精品| 日本免费熟女一区二区三区 | 高清国产日韩欧美熟女| 欧美亚洲91在线视频| 午夜小视频成人免费看| 中文字幕亚洲在线一区| 日韩性生活片免费观看| 亚洲av日韩av高潮无打码| 国产日产欧美精品视频| 最近中文字幕高清中文字幕无|