2007年伊利諾伊大學(xué)舉行了 BCS 理論提出 50 周年的紀念活動。本文基于史蒂文·溫伯格(Steven Weinberg)發(fā)表的演講,他回顧了自發(fā)對稱破缺以及凝聚態(tài)物理和粒子物理的聯(lián)系。 史蒂文·溫伯格是當(dāng)今在世的最重要的物理學(xué)家之一,因提出電弱理論獲得 1979 年的諾貝爾物理學(xué)獎。 撰文 史蒂文·溫伯格 翻譯 寒冬 對我來說有點奇怪,在凝聚態(tài)物理學(xué)家們慶祝其領(lǐng)域重大成就的活動中,一個主要研究基本粒子理論的物理學(xué)家卻受邀發(fā)表演講。不僅我們探索的對象不同,我們的目標、我們渴望在工作中獲得的樂趣也存在深刻的區(qū)別。 凝聚態(tài)物理學(xué)家做研究的動力一般來自凝聚態(tài)現(xiàn)象本身非常有趣。誰不會被超導(dǎo)、超流或是量子霍爾效應(yīng)這樣的奇異現(xiàn)象吸引呢?但另一方面,我認為粒子物理學(xué)家一般不會對他們研究的現(xiàn)象感到興奮。這些粒子本身毫無特色,每個電子看起來都和其他電子一模一樣,非常無聊。 凝聚態(tài)物理的另一個目標是發(fā)現(xiàn)有用的東西。粒子物理學(xué)家喜歡指出粒子物理實驗所衍生的技術(shù),這的確存在,但并不是我們做實驗的目的,而且從這些實驗中獲得的知識沒有可預(yù)見的實用價值。 我們大部分人研究粒子物理既不是因為這些現(xiàn)象奇妙有趣,也不是因為其中的實用價值,而是因為我們在追尋一種還原論的圖像。普通物質(zhì)之所以具有這樣或那樣的性質(zhì),是因為它們遵循原子物理和核物理的原理,而這些原理又來自基本粒子的標準模型,再往下是因為……好吧,我們不知道。這里就是還原論者的前沿陣地,也是我們正在探索的地方。
我認為約翰·巴?。↗ohn Bardeen)、利昂·庫珀(Leon Cooper)和羅伯特·施里弗(Robert Schrieffer)的理論(BCS 理論)最重要的成就是,證明超導(dǎo)性并不是還原論者的前沿領(lǐng)域(Bardeen et al. 1957)。在 BCS 理論提出之前人們并不清楚這一點,比如,瓦爾特·邁斯納(Walter Meissner)在1933年提出一個問題:超導(dǎo)體中的電流是否由已知帶電粒子、電子和離子載流?BCS 證明中最重要的一點就是,理解超導(dǎo)性不需要引入新的粒子或作用力。根據(jù)庫珀向我展示的一本關(guān)于超導(dǎo)的書,許多物理學(xué)家甚至為此感到失望,因為“超導(dǎo)性在原子尺度上竟然只是由于電子和晶格振動之間的微小相互作用。”(Mendelssohn 1966) 粒子物理學(xué)家引領(lǐng)還原論前沿的說法曾引起凝聚態(tài)物理學(xué)家的不滿。(并不是因為一個知名物理學(xué)家喜歡把凝聚態(tài)物理稱作“粗鄙態(tài)物理”(squalid state physics)。)這種不滿在投資超導(dǎo)超級對撞機(Superconducting Super Collider,SSC)的爭論中浮現(xiàn)出來。菲利普·安德森(Phil Anderson)在參議院委員會中遇到了這個爭論,他反對建造 SSC 而我支持建造。他的觀點過于謹慎誠實,在我看來不但沒有對 SSC 的建造帶來負面影響反而幫助了它。對 SSC 造成致命一擊的是一個凝聚態(tài)物理學(xué)家,他那時恰好也是美國物理學(xué)會主席。眾所周知,SSC 項目被取消了,如今我們正等待歐洲核子研究中心(CERN)的大型強子對撞機(LHC)繼續(xù)推進粒子物理的研究。 在 SSC 爭論中,安德森和其他凝聚態(tài)物理學(xué)家不斷指出,從粒子物理中獲得的知識不可能幫他們理解諸如超導(dǎo)這樣的現(xiàn)象。這是事實,但我認為這種說法離題了,因為那并不是我們研究粒子物理的原因;我們的目標是推進還原論的前沿,用更加簡單、普遍的理論解釋自然萬物。同樣我們也可以說,在凝聚態(tài)物理中獲得的知識對于建立更加基本的自然理論也沒有直接的指導(dǎo)意義。 那么像我這樣研究粒子的人與 BCS 理論的慶?;顒佑惺裁搓P(guān)系呢?(關(guān)于超導(dǎo),我只寫過一篇無足輕重的文章,這篇文章在凝聚態(tài)物理學(xué)家當(dāng)中也得到了應(yīng)有的冷漠對待。)凝聚態(tài)物理和粒子物理是相互聯(lián)系的,除了我在上文所說的內(nèi)容。雖然各自領(lǐng)域獲得的知識對另一方幾乎沒有幫助,但經(jīng)驗告訴我們,從一個領(lǐng)域發(fā)展起來的思想可以對另一個領(lǐng)域產(chǎn)生重大影響。有時這些思想在移植的過程中發(fā)生改變,人們在新的領(lǐng)域應(yīng)用這些思想會發(fā)現(xiàn)新的價值。 我關(guān)注的思想是粒子物理學(xué)家從凝聚態(tài)理論(尤其是 BCS 理論)學(xué)到的一個思想,這個思想就是自發(fā)對稱破缺。 在粒子物理中,我們對自然定律的對稱性更有興趣。其中一個對稱是自然定律在三維旋轉(zhuǎn)對稱群中的不變性。換句話說,測量儀器方向改變而自然定律不變。 當(dāng)物理系統(tǒng)沒有表現(xiàn)出其遵從物理定律的所有對稱性時,我們就說這些對稱發(fā)生了自發(fā)破缺。一個熟悉的例子是自發(fā)磁化。控制磁鐵中原子的定律在三維旋轉(zhuǎn)中是完全不變的,但如果溫度低于臨界值,這些原子的自旋會自發(fā)地排列起來指向某個方向,于是產(chǎn)生磁場。正如經(jīng)常發(fā)生的那樣,這種情況下一個子群沒有發(fā)生變化,即關(guān)于磁化方向的二維對稱群。 圖片來源:Luis álvarez-Gaumé & John Ellis 現(xiàn)在到了關(guān)鍵的地方。任何超導(dǎo)體都只不過是材料中某個特定的對稱即電磁規(guī)范不變性發(fā)生了自發(fā)破缺。高溫超導(dǎo)體是這樣,我們更加熟悉的、BCS 理論研究的超導(dǎo)體也是這樣。這里的對稱群就是二維旋轉(zhuǎn)群。這些旋轉(zhuǎn)作用在二維矢量上,該矢量的兩個分量分別是電子場(electron field)的實部和虛部。電子場是量子力學(xué)算符,在物質(zhì)的量子場論中消滅電子。破缺對稱群的旋轉(zhuǎn)角在超導(dǎo)體不同位置可能不同,而且對稱變換也會影響電磁勢,下文中我會回到這一點。 180° 旋轉(zhuǎn)不會改變超導(dǎo)體中對稱破缺,僅僅改變電子場的符號。這個自發(fā)對稱破缺的后果是,超導(dǎo)體中任何偶數(shù)電子場的積具有非零期望值,雖然一個單獨的電子場不是這樣。關(guān)于超導(dǎo)體所有令人震驚的精確性質(zhì)——零電阻,超導(dǎo)體排斥內(nèi)部磁場的“邁斯納效應(yīng)”,穿過厚超導(dǎo)環(huán)的磁通量量子化現(xiàn)象,描述兩個不同電壓超導(dǎo)體的連接處交流電頻率的約瑟夫森公式——都可以由電磁規(guī)范不變性發(fā)生破缺的假設(shè)得到,而不需要知道對稱破缺的機制。 凝聚態(tài)物理學(xué)家一般通過“序參量”(order parameter)來追蹤這些現(xiàn)象,在這里是兩個電子場之積的的非零平均值,但我認為這是一種誤導(dǎo)。兩個電子場沒什么特別的;我們也可以把三個電子場和另一個電子場的復(fù)共軛之積當(dāng)做序參量。重要的是對稱破缺,以及沒有破缺的子群。 自發(fā)對稱破缺并沒有出現(xiàn)在巴丁、庫珀和施里弗的開創(chuàng)性論文中,這可能令人震驚。他們的論文描述了電磁規(guī)范不變性發(fā)生破缺的機制,但他們是從動力學(xué)模型中導(dǎo)出超導(dǎo)體的性質(zhì),而不是從對稱破缺的事實導(dǎo)出。我不是說巴丁、庫珀和施里弗不知道這種自發(fā)對稱破缺。實際上,那時已經(jīng)存在大量文獻討論超導(dǎo)唯象理論中明顯違背規(guī)范不變性的問題,即超導(dǎo)體中電磁場產(chǎn)生的電流取決于“矢量勢”(vector potential),它不遵從規(guī)范不變性。但是巴丁、庫珀和施里弗的注意力集中在了動力學(xué)的細節(jié)而不是對稱破缺。 這不僅僅是研究風(fēng)格的問題。正如巴丁、庫珀和施里弗所闡述的那樣,他們的動力學(xué)模型基于一個近似,即一對電子只有在它們的動量非常接近某個值的時候才會發(fā)生相互作用,這個值稱作“費米面”(Fermi Surface)。這就帶來了一個問題:如何以近似的動力學(xué)理論為基礎(chǔ),來理解超導(dǎo)的精確性質(zhì)呢?比如嚴格為零的電阻和嚴格的通量量子化。只有以嚴格的對稱原理來論證才能充分解釋超導(dǎo)體非同尋常的精確性質(zhì)。 雖然 BCS 論文中沒有強調(diào)自發(fā)對稱破缺,但是認識到這一現(xiàn)象卻在粒子物理中掀起了一場革命。原因是(我有一定的資格討論這個問題,稍后回來),只要對稱發(fā)生了自發(fā)破缺,系統(tǒng)中就一定存在頻率在長波極限為零的激發(fā)。在粒子物理中,這意味著零質(zhì)量的粒子。 這個普遍結(jié)果的第一條線索來自南部陽一郎(Yoichiro Nambu)1960年論文中的評論:規(guī)范不變性在超導(dǎo)體中失效,而支配物質(zhì)和電磁的更基本理論則具有嚴格的規(guī)范不變性;超導(dǎo)體中的這種集體激發(fā)在調(diào)和這個問題中扮演了重要的角色。南部推測,這些集體激發(fā)是這個嚴格規(guī)范不變性的必然結(jié)果。 不久以后,南部把這個思想很好地應(yīng)用在了粒子物理中。在 β 衰變中,電子和中微子(或它們的反粒子)由原子核中流動的兩種不同的流產(chǎn)生,即矢量流和軸矢量流。當(dāng)時已知矢量流是守恒的,就像普通的電流守恒。那么軸矢量流也是守恒的嗎? 流的守恒通常暗示更加基礎(chǔ)的理論中的某些對稱性,而且無論對稱是否自發(fā)破缺都成立。對于普通的電流,這個對稱是電磁規(guī)范不變性。同樣地,β 衰變中的矢量流守恒是因為核物理中的同位旋對稱。不難想到,手征對稱(chiral symmetries)中一些不同對稱將暗示軸矢量流的守恒。但是,情況看起來是這種手征對稱暗示兩種可能:核子質(zhì)量為零,這當(dāng)然不對;或者一定存在零質(zhì)量零自旋負宇稱強相互作用粒子的三重態(tài),這也不對。這兩種可能只不過對應(yīng)對稱性(無論哪種對稱)的兩種可能,即是否發(fā)生對稱破缺,不僅存在于類似超導(dǎo)體材料中,甚至存在于真空之中。 南部認為的確存在這樣一種對稱,而且會在真空中自發(fā)破缺,但是發(fā)生自發(fā)破缺對稱并不是完全對稱(exact symmetry),所以對稱破缺所要求的零自旋負宇稱粒子不是零質(zhì)量,而是具有遠小于其他強相互作用粒子的質(zhì)量。他發(fā)現(xiàn)這種小質(zhì)量的粒子不是別的,正是 π 介子——在所有介子中最輕也是第一個被發(fā)現(xiàn)的介子。隨后,在與喬瓦尼·約納-拉西尼奧(Giovanni Jona-Lasinio)合作的論文中,南部給出了一個說明性理論。利用激進的近似,他們發(fā)現(xiàn)一個合適的手征對稱發(fā)生了自發(fā)破缺,結(jié)果就是輕質(zhì)量的介子以核子和反核子的束縛態(tài)出現(xiàn)。 在這個時候,還沒有人證明完全對稱的破缺總能推出嚴格零質(zhì)量的粒子,只在一些特定的理論中存在一些近似計算的例子。1961年杰弗里·戈德斯通(Jeffrey Goldstone)給出了這類問題的更多例子,并證明這是個普遍的結(jié)論。今天我們把這種零質(zhì)量粒子稱作“戈德斯通玻色子”(Goldstone boson),或“南部-戈德斯通玻色子”。很快,戈德斯通、阿卜杜勒·薩拉姆(Abdus Salam)和我將其發(fā)展為嚴格并且非常普遍的結(jié)果。 這個定理在物理學(xué)的很多分支都有應(yīng)用,其中一個是宇宙學(xué)。你或許知道我們對宇宙微波背景輻射的觀測正用于對宇宙指數(shù)膨脹期的性質(zhì)設(shè)置約束,這一時期稱作“暴脹”(inflation),被廣泛認為發(fā)生于輻射支配宇宙之前。但這有個問題,在暴脹結(jié)束和宇宙微波背景輻射發(fā)出之間,存在許多沒有完全理解的事件:暴脹后宇宙溫度提高,重子的產(chǎn)生,冷暗物質(zhì)退耦等等。那么在我們不理解之間發(fā)生了什么的時候,怎么可能通過研究暴脹很久之后發(fā)出的輻射來研究暴脹呢?
我們能夠避開這個問題的原因在于我們研究的宇宙漲落屬于絕熱過程,可以看做與一般坐標不變性聯(lián)系的一種對稱所要求的戈德斯通激發(fā),這種對稱在時空幾何中發(fā)生了自發(fā)破缺。這些宇宙漲落的波長被暴脹劇烈拉伸,以至于在那個我們不理解的時期已經(jīng)變得非常大,所以宇宙漲落的頻率為零,這就意味著這些漲落的振幅沒有改變,所以與今天較為接近的振幅值就可以告訴我們暴脹中發(fā)生了什么。 但在粒子物理中,這個定理一開始被當(dāng)做令人失望的結(jié)論。當(dāng)時流傳著一個瘋狂的想法,認為自發(fā)對稱破缺能以某種方式解釋強相互作用中發(fā)現(xiàn)的對稱為什么不是完全對稱,我承認一開始我也參與了傳播。在20世紀70年代,所有人都明白了更深刻的道理時,維爾納·海森堡(Werner Heisenberg)卻依然對這個想法深信不疑。 理論預(yù)言存在新的零質(zhì)量粒子,但已經(jīng)被實驗排除。在上世紀60年代早期的人們看來這已經(jīng)關(guān)閉了希望。但無論如何,這只是個錯誤的期待。除了在特殊情況下,自發(fā)對稱破缺看起來完全不像未發(fā)生破缺的近似對稱;它在零質(zhì)量零自旋玻色子以及它們相互作用之間的細節(jié)中顯露出來。今天我們明白,諸如同位旋和手征不變性這樣的近似對稱是(由于某種未知的原因)一些夸克質(zhì)量碰巧相對較小的結(jié)果。 雖然基于錯誤的希望,但這種失望產(chǎn)生了至關(guān)重要的后果。彼得·希格斯(Peter Higgs), 羅伯特·布繞特(Robert Brout),弗朗索瓦·恩格勒(Fran?ois Englert),以及杰拉德·古拉尼(Gerald Guralnik),迪克·哈根(Dick Hagen)和湯姆· 基博爾(Tom Kibble)發(fā)現(xiàn)了戈德斯通、薩拉姆和我的定理的一個例外。這個例外適用于在局域?qū)ΨQ中具有不變性的基本物理,這種對稱的變換在時空的不同位置可以變化,類似電磁規(guī)范變換。(這與 β 衰變中軸矢量流關(guān)聯(lián)的手征對稱形成對比,因其對稱變換在全部時空中都相等時才成立。)對應(yīng)每個局域?qū)ΨQ,一定存在一個矢量場,就像電磁場,如果對稱沒有自發(fā)破缺,其對應(yīng)的量子將是零質(zhì)量。這種場的量子具有的螺旋性(helicity,角動量在運動方向上的分量)等于自然單位 +1 或者 –1。但如果對稱自發(fā)破缺,這兩種螺旋態(tài)會合并為戈德斯通玻色子的零螺旋態(tài)(helicity-zero state)以形成自旋為 1 的有質(zhì)量粒子的三個螺旋態(tài)。所以,正如希格斯、布繞特、恩格勒、古拉尼、哈根、基博爾所證明的那樣,當(dāng)局域?qū)ΨQ自發(fā)破缺時,與對稱關(guān)聯(lián)的矢量粒子或者對稱破缺產(chǎn)生的南部-戈德斯通粒子的質(zhì)量都不為零。 實際上安德森之前就已經(jīng)以 BCS 理論中的例子為基礎(chǔ)提出了這種觀點。但 BCS 理論不是相對論性的,而且洛倫茲不變性作為狹義相對論的一個特征在戈德斯通、薩拉姆和我的定理中扮演了重要角色,所以安德森的觀點被大部分粒子物理學(xué)家忽視了。實際上安德森是對的:希格斯等人注意到的例外的原因是,如果對包含局域?qū)ΨQ的理論進行量子化,既要實現(xiàn)洛倫茲不變性又要遵循量子力學(xué)的規(guī)律(包括要求概率為正)是不可能的。實際上對包含局域?qū)ΨQ的理論進行量子化有兩種方法:一種方法保留正的概率但不能實現(xiàn)洛倫茲不變性;另一種可以實現(xiàn)洛倫茲不變性但是看起來失去了正的概率。事實是,這些理論能同時遵從洛倫茲不變性和正的概率;它們只是不遵從我們的定理。 在包含局域?qū)ΨQ的理論中,矢量玻色子的量子質(zhì)量的出現(xiàn)為楊振寧和羅伯特·米爾斯(Robert Mills)的一個舊的觀點重新打開了一扇大門。楊振寧和米爾斯認為,強相互作用可能由矢量玻色子產(chǎn)生,這些矢量玻色子與某種局域?qū)ΨQ有關(guān),這比我們熟悉的電磁規(guī)范不變性更加復(fù)雜。布繞特和恩格勒特別強調(diào)了這種可能性。這個思想經(jīng)歷了好幾年才發(fā)展為成熟的理論,后來人們知道它并不是強相互作用理論。 也許這個延遲是由于南部早期的思想:π 介子是與一個近似手征對稱(不是局域?qū)ΨQ)有關(guān)的接近零質(zhì)量的玻色子。這個想法看起來越來越好。我曾在這項工作中花了很多精力,而且我喜歡鉆研細節(jié),但那就把我?guī)У搅穗x BCS 理論很遠的地方。我會說,在最低階微擾理論之外來理解包含任意數(shù)量的低能 π 介子的過程中,我們習(xí)慣使用粒子物理中的有效場論。這項工作中發(fā)展起來的數(shù)學(xué)方法后來被約瑟夫·掊欽斯基(Joseph Polchinski)和其他人用來論證 BCS 理論在超導(dǎo)體中的近似。 我和其他人經(jīng)常說起局域?qū)ΨQ自發(fā)破缺在物理上的應(yīng)用,而且我不想在這里花太多時間,但是我不能完全不提它因為我需要它來把我?guī)Щ?BCS 理論。簡單地說,在1967年我回到了以自發(fā)破缺的局域?qū)ΨQ群為基礎(chǔ)的強相互作用理論,很快遇到一個問題:包含普通同位旋變換的子群沒有自發(fā)破缺,所以與 ρ 介子自旋、電荷的這些變換應(yīng)該對應(yīng)一種零質(zhì)量矢量粒子。當(dāng)然,大體上這與觀測并不相符;ρ 介子既不是零質(zhì)量也不是特別輕。 這讓我意識到我在試圖解決錯誤的問題。我本應(yīng)該去研究弱相互作用,比如 β 衰變。對于一個合適的局域?qū)ΨQ,這只是非常自然的選擇,而且當(dāng)我回顧文獻時,發(fā)現(xiàn)我決定研究的對稱群已經(jīng)在1961年被謝爾頓·格拉肖(Sheldon Glashow)所提出,雖然不是在完全的局域?qū)ΨQ破缺的背景下。(我后來發(fā)現(xiàn)薩拉姆和約翰·沃德(John Ward)也考慮了同樣的群)。即使現(xiàn)在是完全的對稱,自發(fā)對稱破缺會產(chǎn)生有質(zhì)量的矢量粒子,帶電的 W 粒子幾十年來都是理論研究的主題,以及我稱作“Z 粒子”的中性粒子可以釋放弱相互作用“中性流”,這還沒有被觀察到。同樣的對稱破缺也賦予電子和其他輕子質(zhì)量,我們也可以輕易地將這個理論推廣到夸克。這個對稱群包含電磁規(guī)范不變性,而且因為這個亞群顯然沒有發(fā)生對稱破缺(除了在超導(dǎo)體中),所以這個理論要求存在零質(zhì)量矢量粒子,但它不是 ρ 介子,而是光子。這個理論后來被稱作“電弱理論”,薩拉姆也在1968年獨立提出該理論。 薩拉姆和我提出這個理論但沒有證明其數(shù)學(xué)上的自洽性,自洽性的證明由杰拉德·特·胡夫特(Gerard 't Hooft)在1971年完成;弱中性流于1973年發(fā)現(xiàn);十年后 W 和 Z 粒子在 CERN 被發(fā)現(xiàn)。它們的詳細特性正如電弱理論所預(yù)言的那樣。 一個(至今)懸而未決的問題:局域電弱對稱是怎樣發(fā)生破缺的?在 BCS 理論中,電磁規(guī)范不變性自發(fā)破缺的出現(xiàn)是由于費米面附近電子之間的吸引力。這些力不一定很強,而是無論這些力有多弱,對稱都會破缺。但這個特征的發(fā)生僅僅是因為費米面的存在,所以從這個方面說,BCS 理論對粒子物理是一種誤導(dǎo)。如果沒有費米面,動力學(xué)上的自發(fā)對稱破缺需要較強的力的作用。作用在已知夸克和輕子上的力不夠強,不足以產(chǎn)生觀察到的動力學(xué)上的局域電弱對稱破缺,所以薩拉姆和我沒有假設(shè)動力學(xué)上的對稱破缺,而是在理論中引入了基本標量場,在經(jīng)典近似下其真空期望值將使對稱發(fā)生破缺。
|
|