【本講教育信息】
一. 教學(xué)內(nèi)容:
三角恒等變形及應(yīng)用
二. 課標(biāo)要求:
1. 經(jīng)歷用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過(guò)程,進(jìn)一步體會(huì)向量方法的作用;
2. 能從兩角差的余弦公式導(dǎo)出兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系;
3. 能運(yùn)用上述公式進(jìn)行簡(jiǎn)單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但不要求記憶)。
三. 命題走向:
從近幾年的高考考查的方向來(lái)看,這部分的高考題以選擇、解答題出現(xiàn)的機(jī)會(huì)較多,有時(shí)候也以填空題的形式出現(xiàn),它們經(jīng)常與三角函數(shù)的性質(zhì)、解三角形及向量聯(lián)合考查,主要題型有三角函數(shù)求值,通過(guò)三角式的變換研究三角函數(shù)的性質(zhì)。
本講內(nèi)容是高考復(fù)習(xí)的重點(diǎn)之一,三角函數(shù)的化簡(jiǎn)、求值及三角恒等式的證明是三角變換的基本問(wèn)題。歷年高考中,在考查三角公式的掌握和運(yùn)用的同時(shí),還注重考查思維的靈活性和發(fā)散性,以及觀察能力、運(yùn)算及觀察能力、運(yùn)算推理能力和綜合分析能力。
【教學(xué)過(guò)程】
一、基本知識(shí)點(diǎn)回顧
1. 兩角和與差的三角函數(shù)
;
;
。
2. 二倍角公式
;
;
。
3. 三角函數(shù)式的化簡(jiǎn)
(1)常用方法:①直接應(yīng)用公式進(jìn)行降次、消項(xiàng);②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。
(2)化簡(jiǎn)要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項(xiàng)數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開(kāi)方數(shù)不含三角函數(shù)。
I. 降冪公式
;;。
II. 輔助角公式
,
。
4. 三角函數(shù)的求值類型有三類
(1)給角求值:一般所給出的角都是非特殊角,要觀察所給角與特殊角間的關(guān)系,利用三角變換消去非特殊角,轉(zhuǎn)化為求特殊角的三角函數(shù)值問(wèn)題;
(2)給值求值:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題的關(guān)鍵在于“變角”,如等,把所求角用含已知角的式子表示,求解時(shí)要注意角的范圍的討論;
(3)給值求角:實(shí)質(zhì)上轉(zhuǎn)化為“給值求值”問(wèn)題,由所得的所求角的函數(shù)值結(jié)合所求角的范圍及函數(shù)的單調(diào)性求得角。
5. 三角恒等式的證明
(1)三角恒等式的證題思路是根據(jù)等式兩端的特征,通過(guò)三角恒等變換,應(yīng)用化繁為簡(jiǎn)、左右同一等方法,使等式兩端化“異”為“同”;
(2)三角條件等式的證題思路是通過(guò)觀察,發(fā)現(xiàn)已知條件和待證等式間的關(guān)系,采用代入法、消參法或分析法進(jìn)行證明。
【典型例題】
例1. 已知,求cos。
解:由已知sin+sin=1…………①,
cos+cos=0…………②,
①2+②2得 2+2cos;
∴cos。
點(diǎn)評(píng):此題是給出單角的三角函數(shù)方程,求復(fù)角的余弦值,易犯錯(cuò)誤是利用方程組解sin、cos、sin、cos,但未知數(shù)有四個(gè),顯然前景并不樂(lè)觀,其錯(cuò)誤的原因在于沒(méi)有注意到所求式與已知式的關(guān)系本題關(guān)鍵在于化和為積促轉(zhuǎn)化,“整體對(duì)應(yīng)”巧應(yīng)用。
例2. 已知是方程的兩個(gè)實(shí)根,求。
分析:由韋達(dá)定理可得到進(jìn)而可以求出的值,再將所求值的三角函數(shù)式用tan表示便可知其值。
解一:由韋達(dá)定理得tan,
所以tan
解二:由韋達(dá)定理得tan,
所以tan
,
。
點(diǎn)評(píng):(1)本例解法二比解法一要簡(jiǎn)捷,好的解法來(lái)源于熟練地掌握知識(shí)的系統(tǒng)結(jié)構(gòu),從而尋找解答本題的知識(shí)“最近發(fā)展區(qū)”。(2)運(yùn)用兩角和與差三角函數(shù)公式的關(guān)鍵是熟記公式,我們不僅要記住公式,更重要的是抓住公式的特征,如角的關(guān)系,次數(shù)關(guān)系,三角函數(shù)名等抓住公式的結(jié)構(gòu)特征對(duì)提高記憶公式的效率起到至關(guān)重要的作用,而且抓住了公式的結(jié)構(gòu)特征,有利于在解題時(shí)觀察分析題設(shè)和結(jié)論等三角函數(shù)式中所具有的相似性的結(jié)構(gòu)特征,聯(lián)想到相應(yīng)的公式,從而找到解題的切入點(diǎn)。(3)對(duì)公式的逆用公式,變形式也要熟悉,如
例3. 化簡(jiǎn)下列各式:
(1),
(2)。
分析:(1)若注意到化簡(jiǎn)式是開(kāi)平方根和2以及其范圍不難找到解題的突破口;(2)由于分子是一個(gè)平方差,分母中的角,若注意到這兩大特征,不難得到解題的切入點(diǎn)。
解:(1)因?yàn)?/span>,
又因,
所以,原式=。
(2)原式=
=。
點(diǎn)評(píng):(1)在二倍角公式中,兩個(gè)角的倍數(shù)關(guān)系,不僅限于2是的二倍,要熟悉多種形式的兩個(gè)角的倍數(shù)關(guān)系,同時(shí)還要注意三個(gè)角的內(nèi)在聯(lián)系的作用,是常用的三角變換。(2)化簡(jiǎn)題一定要找準(zhǔn)解題的突破口或切入點(diǎn),其中的降次,消元,切割化弦,異名化同名,異角化同角是常用的化簡(jiǎn)技巧。(3)公式變形,。
例4. 若。
分析:注意的兩變換,就有以下的兩種解法。
解一:由,
解二:原式
點(diǎn)評(píng):此題若將的左邊展開(kāi)成再求cosx,sinx的值,就很繁瑣,把,并注意角的變換2·運(yùn)用二倍角公式,問(wèn)題就化難為易,化繁為簡(jiǎn)所以在解答有條件限制的求值問(wèn)題時(shí),要善于發(fā)現(xiàn)所求的三角函數(shù)的角與已知條件的角的聯(lián)系,一般方法是拼角與拆角,
如,
,
等。
例5. 已知正實(shí)數(shù)a,b滿足。
分析:從方程的觀點(diǎn)考慮,如果給等式左邊的分子、分母同時(shí)除以a,則已知等式可化為關(guān)于程,從而可求出,若注意到等式左邊的分子、分母都具有的結(jié)構(gòu),可考慮引入輔助角求解。
解一:由題設(shè)得
解二:
解三:
點(diǎn)評(píng):以上解法中,方法一用了集中變量的思想,是一種基本解法;解法二通過(guò)模式聯(lián)想,引入輔助角,技巧性較強(qiáng),但輔助角公式,,或在歷年高考中使用頻率是相當(dāng)高的,應(yīng)加以關(guān)注;解法三利用了換元法,但實(shí)質(zhì)上是綜合了解法一和解法二的解法優(yōu)點(diǎn),所以解法三最佳。
例6. (2000全國(guó)理,17)已知函數(shù)y=cos2x+sinxcosx+1,x∈R.
(1)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?
(1)解:y=cos2x+sinxcosx+1
=(2cos2x-1)++(2sinxcosx)+1
=cos2x+sin2x+
=(cos2x·sin+sin2x·cos)+
=sin(2x+)+
y取得最大值必須且只須2x+=+2kπ,k∈Z,
即x=+kπ,k∈Z。
所以當(dāng)函數(shù)y取得最大值時(shí),自變量x的集合為{x|x=+kπ,k∈Z}。
(2)將函數(shù)y=sinx依次進(jìn)行如下變換:
①把函數(shù)y=sinx的圖象向左平移,得到函數(shù)y=sin(x+)的圖象;
②把得到的圖象上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)
y=sin(2x+)的圖象;
③把得到的圖象上各點(diǎn)縱坐標(biāo)縮短到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)
y=sin(2x+)的圖象;
④把得到的圖象向上平移個(gè)單位長(zhǎng)度,得到函數(shù)y=sin(2x+)+的圖象;
綜上得到函數(shù)y=cos2x+sinxcosx+1的圖象。
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),考查利用三角公式進(jìn)行恒等變形的技能以及運(yùn)算能力。
例7. (2000全國(guó)文,17)已知函數(shù)y=sinx+cosx,x∈R.
(1)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?
解:(1)y=sinx+cosx=2(sinxcos+cosxsin)=2sin(x+),x∈R
y取得最大值必須且只須x+=+2kπ,k∈Z,
即x=+2kπ,k∈Z。
所以,當(dāng)函數(shù)y取得最大值時(shí),自變量x的集合為{x|x=+2kπ,k∈Z}
(2)變換的步驟是:
①把函數(shù)y=sinx的圖象向左平移,得到函數(shù)y=sin(x+)的圖象;
②令所得到的圖象上各點(diǎn)橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)
y=2sin(x+)的圖象;
經(jīng)過(guò)這樣的變換就得到函數(shù)y=sinx+cosx的圖象。
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角公式進(jìn)行恒等變形的技能及運(yùn)算能力。
例8. (06北京理,15)已知函數(shù).
(Ⅰ)求的定義域;
(Ⅱ)設(shè)為第四象限的角,且,求的值。
解:(Ⅰ)由 得,
故的定義域?yàn)?/span>
(Ⅱ)因?yàn)?/span>,且是第四象限的角,
所以
故
。
點(diǎn)評(píng):本題作為高考題的第一大題出現(xiàn),考查基礎(chǔ)的三角函數(shù)的性質(zhì)和三角變換.
例9. (06重慶理,17)設(shè)函數(shù)f(x)=cos2ωx+sinxcosx+a(其中>0,aR),且f(x)的圖象在y軸右側(cè)的第一個(gè)高點(diǎn)的橫坐標(biāo)為。
(Ⅰ)求ω的值;
(Ⅱ)如果f(x)在區(qū)間上的最小值為,求a的值。
解:(I)
依題意得 .
(II)由(I)知,。
又當(dāng)時(shí),,故,從而在區(qū)間上的最小值為,故
例10. (06上海理,17)求函數(shù)=2+的值域和最小正周期。
解:y=cos(x+) cos(x-)+sin2x=cos2x+sin2x=2sin(2x+),
∴函數(shù)y=cos(x+) cos(x-)+sin2x的值域是[-2,2],最小正周期是π。
例11. 已知向量
(I)若求 (II)求的最大值。
解:(1);
當(dāng)=1時(shí)有最大值,此時(shí),最大值為。
點(diǎn)評(píng):本題主要考查以下知識(shí)點(diǎn):1、向量垂直轉(zhuǎn)化為數(shù)量積為0;2,特殊角的三角函數(shù)值;3、三角函數(shù)的基本關(guān)系以及三角函數(shù)的有界性;4.已知向量的坐標(biāo)表示求模,難度中等,計(jì)算量不大。
例12. 有一塊扇形鐵板,半徑為R,圓心角為60°,從這個(gè)扇形中切割下一個(gè)內(nèi)接矩形,即矩形的各個(gè)頂點(diǎn)都在扇形的半徑或弧上,求這個(gè)內(nèi)接矩形的最大面積.
分析:本題入手要解決好兩個(gè)問(wèn)題,
(1)內(nèi)接矩形的放置有兩種情況,如圖所示,應(yīng)該分別予以處理;
(2)求最大值問(wèn)題這里應(yīng)構(gòu)造函數(shù),怎么選擇便于以此表達(dá)矩形面積的自變量。
解:如圖(1),設(shè)∠FOA=θ,則FG=Rsinθ,
,
。
又設(shè)矩形EFGH的面積為S,那么
又∵0°<θ<60°,故當(dāng)cos(2θ-60°)=1,即θ=30°時(shí),
如圖(2),設(shè)∠FOA=θ,則EF=2Rsin(30°-θ),在△OFG中,∠OGF=150°
設(shè)矩形的面積為S。
那么S=EF·FG=4R2sinθsin(30°-θ)
=2R2[cos(2θ-30°)-cos30°]
又∵0<θ<30°,故當(dāng)cos(2θ-30°)=1
。
[思維小結(jié)]
從近年高考的考查方向來(lái)看,這部分常常以選擇題和填空題的形式出現(xiàn),有時(shí)也以大題的形式出現(xiàn),分值約占5%因此能否掌握好本重點(diǎn)內(nèi)容,在一定程度上制約著在高考中成功與否。
1. 兩角和與兩角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在學(xué)習(xí)時(shí)應(yīng)注意以下幾點(diǎn):
(1)不僅對(duì)公式的正用逆用要熟悉,而且對(duì)公式的變形應(yīng)用也要熟悉;
(2)善于拆角、拼角
如,等;
(3)注意倍角的相對(duì)性
(4)要時(shí)時(shí)注意角的范圍
(5)化簡(jiǎn)要求
熟悉常用的方法與技巧,如切化弦,異名化同名,異角化同角等。
2. 證明三角等式的思路和方法。
(1)思路:利用三角公式進(jìn)行化名,化角,改變運(yùn)算結(jié)構(gòu),使等式兩邊化為同一形式。
(2)證明三角不等式的方法:比較法、配方法、反證法、分析法,利用函數(shù)的單調(diào)性,利用正、余弦函數(shù)的有界性,利用單位圓三角函數(shù)線及判別法等。
3. 解答三角高考題的策略。
(1)發(fā)現(xiàn)差異:觀察角、函數(shù)運(yùn)算間的差異,即進(jìn)行所謂的“差異分析”。
(2)尋找聯(lián)系:運(yùn)用相關(guān)公式,找出差異之間的內(nèi)在聯(lián)系。
(3)合理轉(zhuǎn)化:選擇恰當(dāng)?shù)墓?,促使差異的轉(zhuǎn)化。
4. 加強(qiáng)三角函數(shù)應(yīng)用意識(shí)的訓(xùn)練
1999年高考理科第20題實(shí)質(zhì)是一個(gè)三角問(wèn)題,由于考生對(duì)三角函數(shù)的概念認(rèn)識(shí)膚淺,不能將以角為自變量的函數(shù)迅速與三角函數(shù)之間建立聯(lián)系,造成思維障礙,思路受阻.實(shí)際上,三角函數(shù)是以角為自變量的函數(shù),也是以實(shí)數(shù)為自變量的函數(shù),它產(chǎn)生于生產(chǎn)實(shí)踐,是客觀實(shí)際的抽象,同時(shí)又廣泛地應(yīng)用于客觀實(shí)際,故應(yīng)培養(yǎng)實(shí)踐第一的觀點(diǎn).總之,三角部分的考查保持了內(nèi)容穩(wěn)定,難度穩(wěn)定,題量穩(wěn)定,題型穩(wěn)定,考查的重點(diǎn)是三角函數(shù)的概念、性質(zhì)和圖象,三角函數(shù)的求值問(wèn)題以及三角變換的方法。
5. 變?yōu)橹骶€、抓好訓(xùn)練
變是本章的主題,在三角變換考查中,角的變換,三角函數(shù)名的變換,三角函數(shù)次數(shù)的變換,三角函數(shù)式表達(dá)形式的變換等比比皆是,在訓(xùn)練中,強(qiáng)化變換意識(shí)是關(guān)鍵,但題目不可太難,較特殊技巧的題目不做,立足課本,掌握課本中常見(jiàn)問(wèn)題的解法,把課本中習(xí)題進(jìn)行歸類,并進(jìn)行分析比較,尋找解題規(guī)律。
針對(duì)高考中的題目看,還要強(qiáng)化變角訓(xùn)練,經(jīng)常注意收集角間關(guān)系的觀察分析方法.另外如何把一個(gè)含有不同名或不同角的三角函數(shù)式化為只含有一個(gè)三角函數(shù)關(guān)系式的訓(xùn)練也要加強(qiáng),這也是高考的重點(diǎn)。同時(shí)應(yīng)掌握三角函數(shù)與二次函數(shù)相結(jié)合的題目。
【模擬試題】
一、選擇題
1. 化簡(jiǎn)sin600°的值是( )
A. B. C. D.
2. 若,,則的值是( )
A. B. C. D.
3. 若,則等于( )
A. B. C. D.
4. 如果弧度的圓心角所對(duì)的弦長(zhǎng)為,那么這個(gè)圓心角所對(duì)的弧長(zhǎng)為( )
A. B. C. D.
5. 已知,那么下列命題成立的是( )
A. 若是第一象限角,則
B. 若是第二象限角,則
C. 若是第三象限角,則
D. 若是第四象限角,則
6. 若為銳角且,則的值為( )
A. B. C. D.
二、填空題
1. 已知角的終邊與函數(shù)決定的函數(shù)圖象重合,的值為_____________。
2. 若是第三象限的角,是第二象限的角,則是第 象限的角。
3. 在半徑為的圓形廣場(chǎng)中央上空,設(shè)置一個(gè)照明光源,射向地面的光呈圓錐形,且其軸截面頂角為120°,若要光源恰好照亮整個(gè)廣場(chǎng),則其高應(yīng)為_______(精確到)
4. 如果且那么的終邊在第 象限。
5. 若集合,,
則=_______________________________________。
三、解答題
1. 角的終邊上的點(diǎn)與關(guān)于軸對(duì)稱,角的終邊上的點(diǎn)與關(guān)于直線對(duì)稱,求之值。
2. 一個(gè)扇形的周長(zhǎng)為,求扇形的半徑,圓心角各取何值時(shí),此扇形的面積最大?
3. 求的值。
4. 已知其中為銳角,求證:。
【試題答案】
一、選擇題
1. D
2. A
3. B
4. A 作出圖形得
5. D 畫(huà)出單位圓中的三角函數(shù)線可得出答案
6. A
二、填空題
1. 在角的終邊上取點(diǎn)
2. 一或三
3.
4. 二
5.
三、解答題
1. 解:
。
2. 解:設(shè)扇形的半徑為,則
當(dāng)時(shí),取最大值,此時(shí)
3. 解:
4. 證明:由得即
而,得,即
得而為銳角,