美國數(shù)學(xué)本科生,研究生基礎(chǔ)課程參考書目 第一學(xué)年 幾何與拓?fù)洌?br>1、James R. Munkres, Topology:較新的拓?fù)鋵W(xué)的教材適用于本科高年級或研究生一年級; 2、Basic Topology by Armstrong:本科生拓?fù)鋵W(xué)教材; 3、Kelley, General Topology:一般拓?fù)鋵W(xué)的經(jīng)典教材,不過觀點(diǎn)較老; 4、Willard, General Topology:一般拓?fù)鋵W(xué)新的經(jīng)典教材; 5、Glen Bredon, Topology and geometry:研究生一年級的拓?fù)洹缀谓滩模?br>6、Introduction to Topological Manifolds by John M. Lee:研究生一年級的拓?fù)?、幾何教材,是一本新書?br>7、From calculus to cohomology by Madsen:很好的本科生代數(shù)拓?fù)?、微分流形教材?br>代數(shù): 1、Abstract Algebra Dummit:最好的本科代數(shù)學(xué)參考書,標(biāo)準(zhǔn)的研究生一年級代數(shù)教材; 2、Algebra Lang:標(biāo)準(zhǔn)的研究生一、二年級代數(shù)教材,難度很高,適合作參考書; 3、Algebra Hungerford:標(biāo)準(zhǔn)的研究生一年級代數(shù)教材,適合作參考書; 4、Algebra M,Artin:標(biāo)準(zhǔn)的本科生代數(shù)教材; 5、Advanced Modern Algebra by Rotman:較新的研究生代數(shù)教材,很全面; 6、Algebra:a graduate course by Isaacs:較新的研究生代數(shù)教材; 7、Basic algebra Vol I&II by Jacobson:經(jīng)典的代數(shù)學(xué)全面參考書,適合研究生參考。 分析基礎(chǔ): 1、Walter Rudin, Principles of mathematical analysis:本科數(shù)學(xué)分析的標(biāo)準(zhǔn)參考書; 2、Walter Rudin, Real and complex analysis:標(biāo)準(zhǔn)的研究生一年級分析教材; 3、Lars V. Ahlfors, Complex analysis:本科高年級和研究生一年級經(jīng)典的復(fù)分析教材; 4、Functions of One Complex Variable I,J.B.Conway:研究生級別的單變量復(fù)分析經(jīng)典; 5、Lang, Complex analysis:研究生級別的單變量復(fù)分析參考書; 6、Complex Analysis by Elias M. Stein:較新的研究生級別的單變量復(fù)分析教材; 7、Lang, Real and Functional analysis:研究生級別的分析參考書; 8、Royden, Real analysis:標(biāo)準(zhǔn)的研究生一年級實(shí)分析教材; 9、Folland, Real analysis:標(biāo)準(zhǔn)的研究生一年級實(shí)分析教材。 第二學(xué)年 代數(shù): 1、Commutative ring theory, by H. Matsumura:較新的研究生交換代數(shù)標(biāo)準(zhǔn)教材; 2、Commutative Algebra I&II by Oscar Zariski , Pierre Samuel:經(jīng)典的交換代數(shù)參考書; 3、An introduction to Commutative Algebra by Atiyah:標(biāo)準(zhǔn)的交換代數(shù)入門教材; 4、An introduction to homological algebra ,by weibel:較新的研究生二年級同調(diào)代數(shù)教材; 5、A Course in Homological Algebra by P.J.Hilton,U.Stammbach:經(jīng)典全面的同調(diào)代數(shù)參考書; 6、Homological Algebra by Cartan:經(jīng)典的同調(diào)代數(shù)參考書; 7、Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin:高級、經(jīng)典的同調(diào)代數(shù)參考書; 8、Homology by Saunders Mac Lane:經(jīng)典的同調(diào)代數(shù)系統(tǒng)介紹; 9、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud:高級的代數(shù)幾何、交換代數(shù)的參考書,最新的交換代數(shù)全面參考。 代數(shù)拓?fù)洌?br>1、Algebraic Topology, A. Hatcher:最新的研究生代數(shù)拓?fù)錁?biāo)準(zhǔn)教材; 2、Spaniers “Algebraic Topology”:經(jīng)典的代數(shù)拓?fù)鋮⒖紩?br>3、Differential forms in algebraic topology, by Raoul Bott and Loring W. Tu:研究生代數(shù)拓?fù)錁?biāo)準(zhǔn)教材; 4、Massey, A basic course in Algebraic topology:經(jīng)典的研究生代數(shù)拓?fù)浣滩模?br>5、Fulton , Algebraic topology:a first course:很好本科生高年級和研究生一年級的代數(shù)拓?fù)鋮⒖紩?br>6、Glen Bredon, Topology and geometry:標(biāo)準(zhǔn)的研究生代數(shù)拓?fù)浣滩?,有相?dāng)篇幅講述光滑流形; 7、Algebraic Topology Homology and Homotopy:高級、經(jīng)典的代數(shù)拓?fù)鋮⒖紩?br>8、A Concise Course in Algebraic Topology by J.P.May:研究生代數(shù)拓?fù)涞娜腴T教材,覆蓋范圍較廣; 9、Elements of Homotopy Theory by G.W. Whitehead:高級、經(jīng)典的代數(shù)拓?fù)鋮⒖紩?br>實(shí)分析、泛函分析: 1、Royden, Real analysis:標(biāo)準(zhǔn)研究生分析教材; 2、Walter Rudin, Real and complex analysis:標(biāo)準(zhǔn)研究生分析教材; 3、Halmos,”Measure Theory”:經(jīng)典的研究生實(shí)分析教材,適合作參考書; 4、Walter Rudin, Functional analysis:標(biāo)準(zhǔn)的研究生泛函分析教材; 5、Conway,A course of Functional analysis:標(biāo)準(zhǔn)的研究生泛函分析教材; 6、Folland, Real analysis:標(biāo)準(zhǔn)研究生實(shí)分析教材; 7、Functional Analysis by Lax:高級的研究生泛函分析教材; 8、Functional Analysis by Yoshida:高級的研究生泛函分析參考書; 9、Measure Theory, Donald L. Cohn:經(jīng)典的測度論參考書。 微分拓?fù)?李群、李代數(shù) 1、Hirsch, Differential topology:標(biāo)準(zhǔn)的研究生微分拓?fù)浣滩?,有相?dāng)難度; 2、Lang, Differential and Riemannian manifolds:研究生微分流形的參考書,難度較高; 3、Warner,Foundations of Differentiable manifolds and Lie groups:標(biāo)準(zhǔn)研究生微分流形教材,有相當(dāng)?shù)钠v述李群; 4、Representation theory: a first course, by W. Fulton and J. Harris:李群及其表示論標(biāo)準(zhǔn)教材; 5、Lie groups and algebraic groups, by A. L. Onishchik, E. B. Vinberg:李群的參考書; 6、Lectures on Lie Groups W.Y.Hsiang:李群的參考書; 7、Introduction to Smooth Manifolds by John M. Lee:較新的關(guān)于光滑流形的標(biāo)準(zhǔn)教材; 8、Lie Groups, Lie Algebras, and Their Representation by V.S. Varadarajan:最重要的李群、李代數(shù)參考書; 9、Humphreys, Introduction to Lie Algebras and Representation Theory , SpringerVerlag, GTM9:標(biāo)準(zhǔn)的李代數(shù)入門教材。 第三學(xué)年 微分幾何: 1、Peter Petersen, Riemannian Geometry:標(biāo)準(zhǔn)的黎曼幾何教材; 2、Riemannian Manifolds: An Introduction to Curvature by John M. Lee:最新的黎曼幾何教材; 3、doCarmo, Riemannian Geometry.:標(biāo)準(zhǔn)的黎曼幾何教材; 4、M. Spivak, A Comprehensive Introduction to Differential Geometry I—V:全面的微分幾何經(jīng)典,適合作參考書; 5、Helgason , Differential Geometry,Lie groups,and symmetric spaces:標(biāo)準(zhǔn)的微分幾何教材; 6、Lang, Fundamentals of Differential Geometry:最新的微分幾何教材,很適合作參考書; 7、kobayashi/nomizu, Foundations of Differential Geometry:經(jīng)典的微分幾何參考書; 8、Boothby,Introduction to Differentiable manifolds and Riemannian Geometry:標(biāo)準(zhǔn)的微分幾何入門教材,主要講述微分流形; 9、Riemannian Geometry I.Chavel:經(jīng)典的黎曼幾何參考書; 10、Dubrovin, Fomenko, Novikov “Modern geometry-methods and applications”Vol 1—3:經(jīng)典的現(xiàn)代幾何學(xué)參考書。 代數(shù)幾何: 1、Harris,Algebraic Geometry: a first course:代數(shù)幾何的入門教材; 2、Algebraic Geometry Robin Hartshorne :經(jīng)典的代數(shù)幾何教材,難度很高; 3、Basic Algebraic Geometry 1&2 2nd ed. I.R.Shafarevich.:非常好的代數(shù)幾何入門教材; 4、Principles of Algebraic Geometry by giffiths/harris:全面、經(jīng)典的代數(shù)幾何參考書,偏復(fù)代數(shù)幾何; 5、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud:高級的代數(shù)幾何、交換代數(shù)的參考書,最新的交換代數(shù)全面參考; 6、The Geometry of Schemes by Eisenbud:很好的研究生代數(shù)幾何入門教材; 7、The Red Book of Varieties and Schemes by Mumford:標(biāo)準(zhǔn)的研究生代數(shù)幾何入門教材; 8、Algebraic Geometry I : Complex Projective Varieties by David Mumford:復(fù)代數(shù)幾何的經(jīng)典。 調(diào)和分析 偏微分方程 1、An Introduction to Harmonic Analysis,Third Edition Yitzhak Katznelson:調(diào)和分析的標(biāo)準(zhǔn)教材,很經(jīng)典; 2、Evans, Partial differential equations:偏微分方程的經(jīng)典教材; 3、Aleksei.A.Dezin,Partial differential equations,Springer-Verlag:偏微分方程的參考書; 4、L. Hormander “Linear Partial Differential Operators, ” I&II:偏微分方程的經(jīng)典參考書; 5、A Course in Abstract Harmonic Analysis by Folland:高級的研究生調(diào)和分析教材; 6、Abstract Harmonic Analysis by Ross Hewitt:抽象調(diào)和分析的經(jīng)典參考書; 7、Harmonic Analysis by Elias M. Stein:標(biāo)準(zhǔn)的研究生調(diào)和分析教材; 8、Elliptic Partial Differential Equations of Second Order by David Gilbarg:偏微分方程的經(jīng)典參考書; 9、Partial Differential Equations ,by Jeffrey Rauch:標(biāo)準(zhǔn)的研究生偏微分方程教材。 復(fù)分析 多復(fù)分析導(dǎo)論 1、Functions of One Complex Variable II,J.B.Conway:單復(fù)變的經(jīng)典教材,第二卷較深入; 2、Lectures on Riemann Surfaces O.Forster:黎曼曲面的參考書; 3、Compact riemann surfaces Jost:黎曼曲面的參考書; 4、Compact riemann surfaces Narasimhan:黎曼曲面的參考書; 5、Hormander ” An introduction to Complex Analysis in Several Variables”:多復(fù)變的標(biāo)準(zhǔn)入門教材; 6、Riemann surfaces , Lang:黎曼曲面的參考書; 7、Riemann Surfaces by Hershel M. Farkas:標(biāo)準(zhǔn)的研究生黎曼曲面教材; 8、Function Theory of Several Complex Variables by Steven G. Krantz:高級的研究生多復(fù)變參考書; 9、Complex Analysis: The Geometric Viewpoint by Steven G. Krantz:高級的研究生復(fù)分析參考書。 專業(yè)方向選修課: 1、多復(fù)分析;2、復(fù)幾何;3、幾何分析;4、抽象調(diào)和分析;5、代數(shù)幾何;6、代數(shù)數(shù)論;7、微分幾何;8、代數(shù)群、李代數(shù)與量子群;9、泛函分析與算子代數(shù);10、數(shù)學(xué)物理;11、概率理論;12、動力系統(tǒng)與遍歷理論;13、泛代數(shù)。 數(shù)學(xué)基礎(chǔ): 1、halmos ,native set theory; 2、fraenkel ,abstract set theory; 3、ebbinghaus ,mathematical logic; 4、enderton ,a mathematical introduction to logic; 5、landau, foundations of analysis; 6、maclane ,categories for working mathematican。應(yīng)該在核心課程學(xué)習(xí)的過程中穿插選修 假設(shè)本科應(yīng)有的水平 分析: Walter Rudin, Principles of mathematical analysis; Apostol , mathematical analysis; M.spivak , calculus on manifolds; Munkres ,analysis on manifolds; Kolmogorov/fomin , introductory real analysis; Arnold ,ordinary differential equations。 代數(shù): linear algebra by Stephen H. Friedberg; linear algebra by hoffman; linear algebra done right by Axler; advanced linear algebra by Roman; algebra ,artin; a first course in abstract algebra by rotman。 幾何: do carmo, differential geometry of curves and surfaces; Differential topology by Pollack; Hilbert ,foundations of geometry; James R. Munkres, Topology。
|
|