很多朋友覺得PID是遙不可及,很神秘,很高大上的一種控制,對其控制原理也很模糊,只知曉概念性的層面,知其然不知其所以然,那么本文從另類視角來探究微分、積分電路的本質(zhì),意在幫助理解PID的控制原理。 (PID:P表示比例控制;I表示積分控制;D表示微分控制) 在認(rèn)清微分、積分電路之前,我們都知道電容的特性:電容的電流超前電壓相位90°,很多教材都這么描述,讓人很費(fèi)解,其本質(zhì)又是什么呢? 電容的本質(zhì) 要徹底掌握微分、積分電路或PID控制思路,首先得了解電容。 電容就是裝載電荷的容器,從微觀角度看,當(dāng)電荷流入容器時(shí),隨著時(shí)間的變化極間電場逐漸增大。 以圖1為例:
圖1 電容容器充電模型 當(dāng)電荷流出容器時(shí),隨著時(shí)間的變化極間電場逐漸減??;該放電過程的電容可看成是一個(gè)內(nèi)阻為0的電壓源,以圖2為例(移除電源并接地):
圖2 電容容器放電模型 電容就好比水桶一樣,流入的水流無論是大還是小,水位的變化一定是從最低位開始連續(xù)上升的;而電容內(nèi)的電荷也是逐漸從0開始積累起來的,積累過程與自然常數(shù)e有關(guān)系,這里就不深入討論了。 圖3就是電容充放電的電壓-電流曲線。 圖3 電容充放電,電壓-電流曲線 聯(lián)系前面的分析,可總結(jié)為:
微分電路&積分電路 對電容充分了解之后,首先我們先來認(rèn)識最簡單的分壓電路,如圖4根據(jù)歐姆定律VCC=2.5V,該純阻性的分壓電路就是比例運(yùn)算電路的雛形。 圖4 分壓電路 如圖5,我們把R2換成104(0.1μF)電容,C1電容充滿電后近似開路,VCC=5V;該電路就是積分運(yùn)算電路的雛形。那么把5V改成信號源就構(gòu)成了低通濾波電路。 圖5 積分電路 如圖6為上圖的充電波形,紅色表示5V的波形,藍(lán)色表示VCC的波形,因?yàn)殡娙莩潆姇r(shí)的容抗由小變大直至開路,所以分壓VCC也由小變大直至為5V。而且電容充電需要一定的時(shí)間,導(dǎo)致VCC的波形要緩一些。(該5V是開關(guān)電源上電軟啟動時(shí)的輸出波形) 圖6 積分電路波形 把圖4圖5組合就得到圖7的電路,這就是我們經(jīng)常使用的PI電路(比例積分),在參考電壓或分壓電路里很常見,加電容的目的就是增加延時(shí)性,穩(wěn)定VCC的電壓不受5V波動而波動,VCC=2.5V。 圖7 PI電路 把圖5中電容和電阻的位置交換一下得到如圖8的電路,C1電容充滿電后近似開路,VCC=0V;該電路就是微分運(yùn)算電路的雛形。那么把5V改成信號源就構(gòu)成了高通濾波電路。 圖8 微分電路 如圖9為上圖的充電波形,紅色表示5V的波形,藍(lán)色表示VCC的波形,因?yàn)殡娙莩潆姇r(shí)的容抗由小變大直至開路,所以分壓VCC由大變小直至為0V。也就是紅色波形從0開始跳變一瞬間,VCC已經(jīng)是最大值,所以微分有超前預(yù)判的性質(zhì)(反映的是輸入信號的變化率)。 圖9 微分電路波形 如圖10為(反相)比例運(yùn)算電路。 圖10 比例運(yùn)算電路 如圖11,Uo與Ui成線性關(guān)系。 圖11 比例運(yùn)算電路波形 如圖12、圖13為微分運(yùn)算電路的充放電過程: 充電過程的電容C1可等效成一個(gè)可變電阻,C1開始充電時(shí)的容抗為0,電壓不可突變則電壓為0,運(yùn)放-輸入端得到的分壓為正最大峰值,于是Uo為運(yùn)放的負(fù)最大峰值,隨著電容充滿電,U0逐漸變?yōu)?。 圖12 微分運(yùn)算電路-充電 放電過程的電容C1可等效成一個(gè)電壓源,且電壓不可突變,此時(shí)電流反向?yàn)樽畲笾?,R1電壓瞬間反向也為最大值,運(yùn)放-輸入端得到的分壓則為負(fù)最大峰值,于是Uo為運(yùn)放的正最大峰值,隨著電容放完電,U0逐漸變?yōu)?。 圖13 微分運(yùn)算電路-放電 如圖14為微分運(yùn)算電路的輸入輸出波形,聯(lián)系前面的分析結(jié)果,則Uo反映的是Ui的變化率,這樣就達(dá)到了預(yù)判超前的效果。 圖14 微分運(yùn)算電路波形 如圖15為微分運(yùn)算仿真電路,為了防止運(yùn)放出現(xiàn)飽和,必須限制輸入電流,實(shí)際使用時(shí)需要在電容C1輸入端串聯(lián)一個(gè)小電阻R2。串聯(lián)電阻后的電路已經(jīng)不是理想微分運(yùn)算電路了,但是只要輸入信號周期大于2倍RC常數(shù),可以近似為微分運(yùn)算電路。 圖15 微分運(yùn)算仿真電路 如圖16為微分運(yùn)算仿真電路波形,其中IN-為運(yùn)放-輸入端的波形。 圖16 微分運(yùn)算仿真電路波形 如圖17、圖18為積分運(yùn)算電路的充放電過程: 充電過程的電容C1可等效成一個(gè)可變電阻,C1開始充電時(shí)的容抗為0,電壓不可突變則電壓為0,運(yùn)放-輸入端得到的分壓為0,于是Uo為0,隨著電容充滿電,運(yùn)放-輸入端得到的分壓為正最大值,U0為運(yùn)放的負(fù)最大峰值。 圖15 積分運(yùn)算電路-充電 放電過程的電容C1可等效成一個(gè)電壓源,且電壓不可突變,運(yùn)放-輸入端得到的分壓也不可突變,隨著電容放完電,于是Uo由負(fù)最大峰值逐漸變?yōu)?。 圖16 積分運(yùn)算電路-放電 如圖17為積分運(yùn)算電路的輸入輸出波形,聯(lián)系前面的分析結(jié)果,則Uo反映的是Ui的積累過程,這樣就達(dá)到了延遲穩(wěn)定的效果。 圖17 積分運(yùn)算電路波形 如圖18為積分運(yùn)算仿真電路,為了防止運(yùn)放出現(xiàn)飽和,實(shí)際使用時(shí)需要在電容C2兩端并聯(lián)一個(gè)電阻R3。并聯(lián)電阻后的電路已經(jīng)不是理想積分運(yùn)算電路了,但是只要輸入信號周期大于2倍RC常數(shù),可以近似為積分運(yùn)算電路。 圖18 積分運(yùn)算仿真電路 如圖19為積分運(yùn)算仿真電路波形,其中IN-為運(yùn)放-輸入端的波形。 圖19 積分運(yùn)算仿真電路波形 要點(diǎn):
來源:電鹵藥丸 |
|