星│彩虹橋の閃光——方柱石 參考文獻(xiàn) [1] 汪新文.地球科學(xué)概論[M].第一版.地質(zhì)出版社, 1999. [2] 于炳松.沉積巖巖石學(xué)[M].第一版.地質(zhì)出版社, 2016. [3] 賴少聰.巖漿巖巖石學(xué)[M].第二版.高等教育出版社, 2016. [4] 張蓓麗.系統(tǒng)寶石學(xué)[M].第二版.地質(zhì)出版社, 2008. [5] 李勝榮.結(jié)晶學(xué)與礦物學(xué)[M].第一版.地質(zhì)出版社, 2012. [6] 馬媛媛.Eu單摻及Ce_(3+)和...柱石熒光粉的合成及光譜研究[D].新疆師范大學(xué), 2017. [7] 廖任慶.一顆鈣柱石的寶石學(xué)特征測試分析[J].寶石和寶石學(xué)雜志, 2020, 22(2). [8] 蔣佳麗.電子輻照及熱處理對(duì)無色—淺黃色方柱石顏色的影響[J].寶石和寶石學(xué)雜志, 2017, 19(1). [9] 程靜 等.Eu2O3摻雜天然方柱石藍(lán)色長余輝發(fā)光特性[J].新疆師范大學(xué)學(xué)報(bào), 2017, 37(2). [10] 任芊芊 等.淺黃色方柱石化學(xué)成分及熱處理結(jié)果分析[J].寶石和寶石學(xué)雜志, 2016, 18(2). [11] 鄧心儀.方柱石的寶石學(xué)特征與發(fā)光性研究[D].中國地質(zhì)大學(xué)(北京), 2021. [12] 葉旭 等.拉曼面掃描無損鑒定礦物包裹體:以彩虹方柱石中的磁鐵礦包裹體為例[J].光譜學(xué)與光譜分析, 2019, 41(7). [13] 丁薇 等.拉曼面掃描無損鑒定礦物包裹體:馬達(dá)加斯加黃色方柱石的譜學(xué)特征研究[J].光譜學(xué)與光譜分析, 2022, 42(7). [14] mindat.mindat[EB/OL].[2022-10-6].https://zh./. [15] 閃靈晶.方柱石紅色熒光好漂亮[EB/OL].[2022-10-6].https://www./post/520166811. [16] 出門看風(fēng)景.紫色方柱石的多色性[EB/OL].[2022-10-6].https://www./post/58104589. [17] 漫悲歌.發(fā)顆好玩稀有的寶石,熒光+光致變色方柱石[EB/OL].[2022-10-6].https://www./post/4471992. [18] 漫悲歌.發(fā)顆好玩稀有的寶石,熒光+光致變色方柱石[EB/OL].[2022-10-6].https://www./post/4471992. [19] 一桶天下.黃色方柱石觀賞[EB/OL].[2022-10-6].https://www./post/3700422. [20] 百度百科.若澤·博尼法西奧·德·安德拉達(dá)·席爾瓦[EB/OL].[2022-106].https://baike.baidu.com/item/%E8%8B%A5%E6%B3%BD%C2%B7%E5%8D%9A%E5%B0%BC%E6%B3%95%E8%A5%BF%E5%A5%A5%C2%B7%E5%BE%B7%C2%B7%E5%AE%89%E5%BE%B7%E6%8B%89%E8%BE%BE%C2%B7%E5%B8%AD%E5%B0%94%E7%93%A6/9473153?fr=aladdin. [21] Zeitschrift für Kristallographie (1931): 81: 110. [22] C. O. Ingamells and J. Gittins (1967): The stoichiometry of scapolite. Can. Mineral. 9, 214-236. [23] Levien, L. and Papike, J.J. (1976): Scapolite crystal chemistry: Aluminium-silicon distributions, carbonate group disorder, and thermal expansion. Amer. Mineral., 61, 864-877. [24] Strunz, H., Wilk, H. (1976): Violetter Skapolith von Edelsteinqualit?t aus Ostafrika. Aufschluss 27, 389-391 (in German). [25] Peterson, R.C., Donnay, G. and LePage, Y. (1979): Sulfate disorder in scapolite. Can Mineral., 17, 53-61. [26] Neues Jahrbuch für Mineralogie, Abhandlungen (1984): 149, 309. [27] Belokoneva, E. L.; Sokolova, N. V.; Urusov, V. S. (1993): Scapolite: crystal structures of marialite (Ma11) and meiorite (Me88) with space groups as functions of composition. Kristallografiya 38(1), 52-57 (in Russian) [28] Pan, Y., Fleet, M.E., and Ray, G.E. (1994): Scapolite in two Canadian gold deposits: Nickel Plate, British Columbia and Hemlo, Ontario. Canadian Mineralogist: 32: 825-837. [29] Teertstra, D.K. and Sherriff, B.L. (1996): Scapolite cell-parameter trends along the solid-solution series. American Mineralogist, 81, 169-180. [30] Teertstra, D.K. and Sherriff, B.L. (1997): Substitutional mechanisms, compositional trends and the end-member formulae of scapolite. Chemical Geology, 136, 233-260. [31] Seto, Y., Shimobayashi, N., Miyake, A. & Kitamura, M. (2004): Composition and I4/m - P42/n phase transition in scapolite solid solutions. American Mineralogist 89, 257-265. [32] Christy, A.G. & Gatedal, K. (2005): Extremely Pb-rich rock-forming silicates including a beryllian scapolite and associated minerals in a skarn from L?ngban, V?rmland, Sweden. Mineralogical Magazine, 69, 995-1018. [33] Antao, S.M., Hassan, I. (2008) Increase in Al-Si and Na-Ca disorder with temperature in scapolite Me32.9. The Canadian Mineralogist 46, 1577-1591 [34] Sokolova, E., Hawthorne, F.C. (2008): The crystal chemistry of the scapolite-group minerals. I. Crystal structure and long-range order. The Canadian Mineralogist 46, 1527-1554. [35] Hawthorne, F.C. & Sokolova, E. (2008): The crystal chemistry of the scapolite-group minerals. II. The origin of the I4/m ? P42/n phase transition and the nonlinear variations in chemical composition. Canadian Mineralogist 46, 1555-1575. [36] Anato, S.M. & Hassan, I. (2011): The structures of marialite (Me6) and meionite (Me93) in space groups P42/n and I4/m, and the absence of phase transitions in the scapolite series. Powder Diffraction 26, 119-125. [37] Antao, S.M. & Hassan, I. (2011): Complete Al-Si order in scapolite Me37.5, ideally Ca3Na5[Al8Si16O48]Cl(CO3), and implications for antiphase domain boundaries (APBs). Canadian Mineralogist, 49, 581-586. |
|