一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

常見分布及其概率分布圖

 lhbsd 2022-09-07 發(fā)布于廣東

概率分布有兩種類型:離散(discrete)概率分布連續(xù)(continuous)概率分布。

離散概率分布也稱為概率質(zhì)量函數(shù)(probability mass function)。離散概率分布包括:

  • 伯努利分布(Bernoulli distribution)
  • 二項(xiàng)分布(binomial distribution)
  • 幾何分布(geometric distribution)
  • 泊松分布(Poisson distribution)等。

連續(xù)概率分布也稱為概率密度函數(shù)(probability density function),它們是具有連續(xù)取值(例如一條實(shí)線上的值)的函數(shù)。連續(xù)概率分布包括:

  • 正態(tài)分布(normal distribution)
  • 指數(shù)分布(exponential distribution)
  • β分布(beta distribution)等。

1. 兩點(diǎn)分布(伯努利分布

伯努利試驗(yàn):

伯努利試驗(yàn)是在同樣的條件下重復(fù)地、各次之間相互獨(dú)立地進(jìn)行的一種試驗(yàn)。

即只先進(jìn)行一次伯努利試驗(yàn),該事件發(fā)生的概率為p,不發(fā)生的概率為1-p。這是一個(gè)最簡(jiǎn)單的分布,任何一個(gè)只有兩種結(jié)果的隨機(jī)現(xiàn)象都服從0-1分布。

最常見的例子為拋硬幣

其中,期望 E = p E = p E=p ,方差 D = p ( 1 ? p ) 2 + ( 1 ? p ) ( 0 ? p ) 2 = p ( 1 ? p ) D = p(1-p)^2+(1-p)(0-p)^2 = p(1-p) D=p(1?p)2+(1?p)(0?p)2=p(1?p)

2. 二項(xiàng)分布(n重伯努利分布)

用數(shù)學(xué)符號(hào) X~B(n,p) 來(lái)表示二項(xiàng)分布。即做n個(gè)兩點(diǎn)分布的實(shí)驗(yàn),其中, E = n p E = np E=np, D = n p ( 1 ? p ) D = np(1-p) D=np(1?p)。而它的概率分布函數(shù)為: P ( k ) = C n k p k ( 1 ? p ) n ? k P(k)=C_n^kp^k(1-p)^{n-k} P(k)=Cnk?pk(1?p)n?k

對(duì)于拋硬幣的問(wèn)題,做100次實(shí)驗(yàn),正反面概率都為0.5,觀察其概率分布函數(shù):

from scipy.stats import binom
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

# Binomial distribution
n = 100
p = 0.5
k = np.arange(20,80)
binomial = binom.pmf(k,n,p)
plt.plot(k, binomial, 'o-')
plt.title('binomial:n=%i,p=%.2f'%(n,p))
plt.xlabel('number of success') #正面向上的次數(shù)
plt.ylabel('probalility of success')
plt.grid(True)
plt.show()

結(jié)果顯示如下:
二項(xiàng)分布
觀察概率分布圖,可以看到,對(duì)于n = 100次實(shí)驗(yàn)中,有50次成功的概率(正面向上)的概率最大。

3. 幾何分布

用數(shù)學(xué)符號(hào) X~GE(p) 來(lái)表示幾何分布。即在n次伯努利實(shí)驗(yàn)中,第k次實(shí)驗(yàn)才得到第一次成功的概率分布。其中: P ( k ) = ( 1 ? p ) ( k ? 1 ) p P(k) = (1-p)^{(k-1)}p P(k)=(1?p)(k?1)p。期望值 E = 1 / p E = 1/p E=1/p 推導(dǎo)方法就是利用利用錯(cuò)位相減法然后求lim - k ->無(wú)窮 。方差 D = ( 1 ? p ) / p 2 D = (1-p)/p^2 D=(1?p)/p2 推導(dǎo)方法利用了 D ( x ) = E ( x ) 2 ? E ( x 2 ) D(x) = E(x)^2-E(x^2) D(x)=E(x)2?E(x2),其中 E ( x 2 ) E(x^2) E(x2)求解同上。

對(duì)于拋硬幣的問(wèn)題,正反面概率都為0.5,觀察第k次實(shí)驗(yàn)才得到第一次成功的概率分布函數(shù):

from scipy.stats import geom

# 幾何分布(geometric distribution)
n = 10
p = 0.5
k = np.arange(1,10)
geom_dis = geom.pmf(k,p)
plt.plot(k, geom_dis, 'o-')
plt.title('geometric distribution')
plt.xlabel('i-st item success')
plt.ylabel('probalility of i-st item success')
plt.grid(True)
plt.show()

顯示結(jié)果如下:
幾何分布

4. 泊松分布

用數(shù)學(xué)符號(hào)X~P(λ) 表示泊松分布。描述單位時(shí)間/面積內(nèi),隨機(jī)事件發(fā)生的次數(shù)。 P ( x = k ) = λ k k ! e ( ? λ ) , k = 0 , 1 , 2 , . . . λ > 0 P(x = k) = \frac{λ^k}{k!}e^{(-λ) } ,k = 0,1,2, ... λ >0 P(x=k)=k!λk?e(?λ),k=0,1,2,...λ>0。泊松分布可作為二項(xiàng)分布的極限而得到。

一般的說(shuō),若X~B(n,p),其中n很大,p很小,因而 np=λ 不太大時(shí),X的分布接近于泊松分布 P(λ)。λ:?jiǎn)挝粫r(shí)間/面積下,隨機(jī)事件的平均發(fā)生率。期望值E = λ,方差D = λ。譬如:某一服務(wù)設(shè)施一定時(shí)間內(nèi)到達(dá)的人數(shù)、一個(gè)月內(nèi)機(jī)器損壞的次數(shù)等。

假設(shè)某地區(qū),一年中發(fā)生槍擊案的平均次數(shù)為2??疾煲幌虏煌螖?shù)的概率分布:

from scipy.stats import poisson

# 泊松分布(poisson distribution)
mu = 2
x = np.arange(10)
plt.plot(x, poisson.pmf(x, mu),'o')
plt.title(u'poisson distribution')
plt.xlabel('shot case count')
plt.ylabel('probalility of shot case count')
plt.grid(True)
plt.show()

結(jié)果顯示如下:

泊松分布
一年內(nèi)的槍擊案發(fā)生次數(shù)的分布如上所示??梢钥吹?次和2次的槍擊案發(fā)生概率最高。

與二項(xiàng)分布對(duì)比:

# 二項(xiàng)分布和泊松分布對(duì)比
fig,ax = plt.subplots(1,1)
 
n = 1000
p = 0.1
x = np.arange(80,120)
p1, = ax.plot(x, binom.pmf(x, n, p),'b*',label = 'binom')
 
mu = n*p
p2, = ax.plot(x, poisson.pmf(x, mu),'ro',label = 'poisson')
 
plt.legend(handles = [p1, p2])
plt.title(u'possion and binomial')
plt.show()

對(duì)比

可以看到這里當(dāng)n=1000,p=0.1時(shí), λ=100,泊松分布和二項(xiàng)分布已經(jīng)很接近了。

5. 指數(shù)分布

用數(shù)學(xué)符號(hào) X~E(λ) 表示指數(shù)分布。

指數(shù)分布的特性:無(wú)記憶性。比如燈泡的使用壽命服從指數(shù)分布,無(wú)論他已經(jīng)使用多長(zhǎng)一段時(shí)間,假設(shè)為s,只要還沒(méi)有損壞,它能再使用一段時(shí)間t 的概率與一件新產(chǎn)品使用時(shí)間t 的概率一樣。

這個(gè)證明過(guò)程簡(jiǎn)單表示: P ( s + t ∣ s ) = P ( s + t , s ) / P ( s ) = F ( s + t ) / F ( s ) = P ( t ) P(s+t| s) = P(s+t , s)/P(s) = F(s+t)/F(s)=P(t) P(s+ts)=P(s+t,s)/P(s)=Fs+t/Fs=P(t)

它的概率密度函數(shù)為:

f ( x ) = { λ e ? λ x x > 0 , λ > 0 0 x ≤ 0 f(x)= f(x)={λe?λx0?x>0,λ>0x0?

期望值 E = 1 / λ E=1/λ E=1/λ,方差 D = 1 / λ 2 D=1/λ^2 D=1/λ2

from scipy.stats import expon
# 指數(shù)分布
fig,ax = plt.subplots(1,1)
 
lambdaUse = 2
loc = 0
scale = 1.0/lambdaUse
 
#ppf:累積分布函數(shù)的反函數(shù)。q=0.01時(shí),ppf就是p(X<x)=0.01時(shí)的x值。
x = np.linspace(expon.ppf(0.01,loc,scale),expon.ppf(0.99,loc,scale),100)
ax.plot(x, expon.pdf(x,loc,scale),'b-',label = 'expon')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title(u'expon distribution')
plt.show()

顯示結(jié)果如下:

指數(shù)分布

6. 正態(tài)分布(高斯分布)

用數(shù)學(xué)符號(hào) X~N(μ,σ^2) 表示正態(tài)分布。期望值 E = μ E = μ E=μ,方差 D = σ 2 D = σ^2 D=σ2。

正態(tài)分布是比較常見的,譬如學(xué)生考試成績(jī)的人數(shù)分布、身高分布等。

它的概率密度函數(shù)是:

f ( x ) = 1 2 π σ e x p ( ? ( x ? μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2\pi} \sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2}) f(x)=2π ?σ1?exp(?2σ2(x?μ)2?)

from scipy.stats import norm
# 正態(tài)分布(normal distribution)
fig,ax = plt.subplots(1,1)
 
loc = 1
scale = 2.0

#ppf:累積分布函數(shù)的反函數(shù)。q=0.01時(shí),ppf就是p(X<x)=0.01時(shí)的x值。
x = np.linspace(norm.ppf(0.01,loc,scale),norm.ppf(0.99,loc,scale),100)
ax.plot(x, norm.pdf(x,loc,scale),'-',label = 'norm')
 
plt.title(u'normal distribution')
plt.show()

正態(tài)分布


附:
code


參考:

  1. 概率論中常見分布總結(jié)以及python的scipy庫(kù)使用:兩點(diǎn)分布、二項(xiàng)分布、幾何分布、泊松分布、均勻分布、指數(shù)分布、正態(tài)分布

THE END.

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多

    福利一区二区视频在线| 久久精品偷拍视频观看| 日韩免费国产91在线| 欧美一级日韩中文字幕| 大香伊蕉欧美一区二区三区| 国产又猛又大又长又粗| 欧美日韩亚洲国产综合网 | 一区二区免费视频中文乱码国产 | 福利新区一区二区人口| 黄男女激情一区二区三区 | 中文字幕亚洲精品乱码加勒比| 亚洲精品中文字幕熟女| 久久精视频免费视频观看| 日本一二三区不卡免费| 黄色国产精品一区二区三区| 国产传媒免费观看视频| 黄片在线观看一区二区三区| 国产一区二区三区口爆在线| 亚洲欧美日韩在线看片| 国产又粗又猛又黄又爽视频免费| 人妻一区二区三区在线| 亚洲超碰成人天堂涩涩| 在线免费看国产精品黄片| 免费特黄欧美亚洲黄片| 国产乱人伦精品一区二区三区四区| 久久青青草原中文字幕| 99热九九在线中文字幕| 欧美日本亚欧在线观看| 国产日韩精品激情在线观看| 不卡一区二区在线视频| 日韩人妻有码一区二区| 色一情一伦一区二区三| 欧美日韩亚洲精品在线观看| 欧美日韩精品久久亚洲区熟妇人| 少妇毛片一区二区三区| 日韩中文无线码在线视频| 欧美精品久久一二三区| 国产欧美一区二区三区精品视| 草草视频精品在线观看| 国产午夜福利不卡片在线观看| 亚洲中文字幕人妻系列|