導(dǎo)讀:在 NeurIPS 2020 上,清華大學(xué)聯(lián)合微眾銀行、微軟研究院以及博世人工智能中心提出了 Graph Random Neural Network (GRAND),一種用于圖半監(jiān)督學(xué)習(xí)的新型圖神經(jīng)網(wǎng)絡(luò)框架。在模型架構(gòu)上,GRAND 提出了一種簡單有效的圖數(shù)據(jù)增強(qiáng)方法 Random Propagation,用來增強(qiáng)模型魯棒性及減輕過平滑。基于 Random Propagation,GRAND 在優(yōu)化過程中使用一致性正則(Consistency Regularization)來增強(qiáng)模型的泛化性,即除了優(yōu)化標(biāo)簽節(jié)點(diǎn)的 cross-entropy loss 之外,還會優(yōu)化模型在無標(biāo)簽節(jié)點(diǎn)的多次數(shù)據(jù)增強(qiáng)的預(yù)測一致性。GRAND 不僅在理論上有良好的解釋,還在三個(gè)公開數(shù)據(jù)集上超越了 14 種不同的 GNN 模型,取得了 SOTA 的效果。 這項(xiàng)研究被收入為 NeurIPS 2020 的 Oral paper (105/9454)。 論文名稱:GraphRandom Neural Network for Semi-Supervised Learning on Graphs ArXiv: https:///abs/2005.11079 Github: https://github.com/THUDM/GRAND 為了解決這些問題,在這個(gè)工作中我們提出了圖隨機(jī)神經(jīng)網(wǎng)絡(luò)(GRAND),一種簡單有效的圖半監(jiān)督學(xué)習(xí)方法。與傳統(tǒng) GNN 不同,GRAND 采用隨機(jī)傳播 (Random Propagation)策略。具體來說,我們首先隨機(jī)丟棄一些節(jié)點(diǎn)的屬性對節(jié)點(diǎn)特征做一個(gè)隨機(jī)擾動(dòng),然后對擾動(dòng)后的節(jié)點(diǎn)特征做一個(gè)高階傳播。這樣一來,每個(gè)節(jié)點(diǎn)的特征就會隨機(jī)地與其高階鄰居的特征進(jìn)交互,這種策略會降低節(jié)點(diǎn)對某些特定節(jié)點(diǎn)的依賴,提升模型的魯棒性。 除此之外,在同質(zhì)圖中,相鄰的節(jié)點(diǎn)往往具有相似的特征及標(biāo)簽,這樣節(jié)點(diǎn)丟棄的信息就可以被其鄰居的信息補(bǔ)償過來。因此這樣形成的節(jié)點(diǎn)特征就可以看成是一種針對圖數(shù)據(jù)的數(shù)據(jù)增強(qiáng)方法?;谶@種傳播方法,我們進(jìn)而設(shè)計(jì)了基于一致性正則(consistency regularization)的訓(xùn)練方法,即每次訓(xùn)練時(shí)進(jìn)行多次 Random Propagation 生成多個(gè)不同的節(jié)點(diǎn)增強(qiáng)表示,然后將這些增強(qiáng)表示輸入到一個(gè) MLP 中,除了優(yōu)化交叉熵?fù)p失之外,我們還會去優(yōu)化 MLP 模型對多個(gè)數(shù)據(jù)增強(qiáng)產(chǎn)生預(yù)測結(jié)果的一致性。這種一致性正則損失無需標(biāo)簽,可以使模型利用充足的無標(biāo)簽數(shù)據(jù),以彌補(bǔ)半監(jiān)督任務(wù)中監(jiān)督信息少的不足,提升模型的泛化能力,減小過擬合的風(fēng)險(xiǎn)。 圖三 圖四 圖五 圖六 [1] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016. [2] Zügner D, Akbarnejad A, Günnemann S. Adversarial attacks on neural networks for graph data[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 2847-2856. |
|