一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

GitHub資源 | 機(jī)器學(xué)習(xí)領(lǐng)域最全綜述列表資源匯總

 520jefferson 2020-10-09

作者:kaiyuan

來(lái)自:NewBeeNLP
編輯:王萌(深度學(xué)習(xí)沖鴨公眾號(hào))
繼續(xù)來(lái)給大家分享github上的干貨,一個(gè)『機(jī)器學(xué)習(xí)領(lǐng)域綜述大列表』,涵蓋了自然語(yǔ)言處理、推薦系統(tǒng)、計(jì)算機(jī)視覺(jué)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等主題。

另外發(fā)現(xiàn)源repo中NLP相關(guān)的綜述不是很多,于是把一些覺(jué)得還不錯(cuò)的文章添加進(jìn)去了,重新整理更新在 AI-Surveys[1] 中。

  • ml-surveys: https://github.com/eugeneyan/ml-surveys
  • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

『收藏等于看完』系列,來(lái)看看都有哪些吧, enjoy!


自然語(yǔ)言處理

  • 深度學(xué)習(xí):Recent Trends in Deep Learning Based Natural Language Processing[2]
  • 文本分類(lèi):Deep Learning Based Text Classification: A Comprehensive Review[3]
  • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]
  • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]
  • 遷移學(xué)習(xí):Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])
  • 遷移學(xué)習(xí):Neural Transfer Learning for Natural Language Processing[8]
  • 知識(shí)圖譜:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]
  • 命名實(shí)體識(shí)別:A Survey on Deep Learning for Named Entity Recognition[10]
  • 關(guān)系抽?。篗ore Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]
  • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]
  • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]
  • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]
  • 閱讀理解:Neural Reading Comprehension And Beyond[15]
  • 閱讀理解:Neural Machine Reading Comprehension: Methods and Trends[16]
  • 機(jī)器翻譯:Neural Machine Translation: A Review[17]
  • 機(jī)器翻譯:A Survey of Domain Adaptation for Neural Machine Translation[18]
  • 預(yù)訓(xùn)練模型:Pre-trained Models for Natural Language Processing: A Survey[19]
  • 注意力機(jī)制:An Attentive Survey of Attention Models[20]
  • 注意力機(jī)制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]
  • 注意力機(jī)制:Attention in Natural Language Processing[22]
  • BERT:A Primer in BERTology: What we know about how BERT works[23]
  • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]
  • Evaluation of Text Generation: A Survey[25]


推薦系統(tǒng)

  • Recommender systems survey[26]
  • Deep Learning based Recommender System: A Survey and New Perspectives[27]
  • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]
  • A Survey of Serendipity in Recommender Systems[29]
  • Diversity in Recommender Systems – A survey[30]
  • A Survey of Explanations in Recommender Systems[31]


深度學(xué)習(xí)

  • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]
  • 知識(shí)蒸餾:Knowledge Distillation: A Survey[33]
  • 模型壓縮:Compression of Deep Learning Models for Text: A Survey[34]
  • 遷移學(xué)習(xí):A Survey on Deep Transfer Learning[35]
  • 神經(jīng)架構(gòu)搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]
  • 神經(jīng)架構(gòu)搜索:Neural Architecture Search: A Survey[37]


計(jì)算機(jī)視覺(jué)

  • 目標(biāo)檢測(cè):Object Detection in 20 Years[38]
  • 對(duì)抗性攻擊:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]
  • 自動(dòng)駕駛:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]


強(qiáng)化學(xué)習(xí)

  • A Brief Survey of Deep Reinforcement Learning[41]
  • Transfer Learning for Reinforcement Learning Domains[42]
  • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]


Embeddings

  • 圖:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]
  • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]
  • 文本:Diachronic Word Embeddings and Semantic Shifts[46]
  • 文本:Word Embeddings: A Survey[47]
  • A Survey on Contextual Embeddings[48]


Meta-learning & Few-shot Learning

  • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]
  • Meta-learning for Few-shot Natural Language Processing: A Survey[50]
  • Learning from Few Samples: A Survey[51]
  • Meta-Learning in Neural Networks: A Survey[52]
  • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]
  • Baby steps towards few-shot learning with multiple semantics[54]
  • Meta-Learning: A Survey[55]
  • A Perspective View And Survey Of Meta-learning[56]


其他

  • A Survey on Transfer Learning[57]


本文參考資料

[1]AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

[2]Recent Trends in Deep Learning Based Natural Language Processing: https:///pdf/1708.02709.pdf

[3]Deep Learning Based Text Classification: A Comprehensive Review: https:///pdf/2004.03705

[4]Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www./index.php/jair/article/view/11173/26378

[5]Neural Language Generation: Formulation, Methods, and Evaluation: https:///pdf/2007.15780.pdf

[6]Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer:https://ai./2020/02/exploring-transfer-learning-with-t5.html

[7]Paper: https:///abs/1910.10683

[8]Neural Transfer Learning for Natural Language Processing: https://aran.library./handle/10379/15463

[9]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https:///abs/2002.00388

[10]A Survey on Deep Learning for Named Entity Recognition: https:///abs/1812.09449

[11]More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https:///abs/2004.03186

[12]Deep Learning for Sentiment Analysis : A Survey: https:///abs/1801.07883

[13]Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore./stamp/stamp.jsp?tp=&arnumber=8726353

[14]Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www./anthology/C18-1328/

[15]Neural Reading Comprehension And Beyond: https://stacks./file/druid:gd576xb1833/thesis-augmented.pdf

[16]Neural Machine Reading Comprehension: Methods and Trends: https:///abs/1907.01118

[17]Neural Machine Translation: A Review: https:///abs/1912.02047

[18]A Survey of Domain Adaptation for Neural Machine Translation: https://www./anthology/C18-1111.pdf

[19]Pre-trained Models for Natural Language Processing: A Survey: https:///abs/2003.08271

[20]An Attentive Survey of Attention Models: https:///pdf/1904.02874.pdf

[21]An Introductory Survey on Attention Mechanisms in NLP Problems: https:///abs/1811.05544

[22]Attention in Natural Language Processing: https:///abs/1902.02181

[23]A Primer in BERTology: What we know about how BERT works: https:///pdf/2002.12327.pdf

[24]Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https:///pdf/2005.04118.pdf

[25]Evaluation of Text Generation: A Survey: https:///pdf/2006.14799.pdf

[26]Recommender systems survey: http:///wp-content/uploads/2016/12/sciencedirec.pdf

[27]Deep Learning based Recommender System: A Survey and New Perspectives: https:///pdf/1707.07435.pdf

[28]Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https:///pdf/1907.06902.pdf

[29]A Survey of Serendipity in Recommender Systems: https://www./publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems

[30]Diversity in Recommender Systems – A survey: https:///static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf

[31]A Survey of Explanations in Recommender Systems: http://citeseerx.ist./viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf

[32]A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www./2079-9292/8/3/292/htm

[33]Knowledge Distillation: A Survey: https:///pdf/2006.05525.pdf

[34]Compression of Deep Learning Models for Text: A Survey: https:///pdf/2008.05221.pdf

[35]A Survey on Deep Transfer Learning: https:///pdf/1808.01974.pdf

[36]A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https:///abs/2006.02903

[37]Neural Architecture Search: A Survey: https:///abs/1808.05377

[38]Object Detection in 20 Years: https:///pdf/1905.05055.pdf

[39]Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore./stamp/stamp.jsp?arnumber=8294186

[40]Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https:///pdf/1704.05519.pdf

[41]A Brief Survey of Deep Reinforcement Learning: https:///pdf/1708.05866.pdf

[42]Transfer Learning for Reinforcement Learning Domains: http://www./papers/volume10/taylor09a/taylor09a.pdf

[43]Review of Deep Reinforcement Learning Methods and Applications in Economics: https:///pdf/2004.01509.pdf

[44]A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https:///pdf/1709.07604

[45]From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www./index.php/jair/article/view/11259/26454

[46]Diachronic Word Embeddings and Semantic Shifts: https:///pdf/1806.03537.pdf

[47]Word Embeddings: A Survey: https:///abs/1901.09069

[48]A Survey on Contextual Embeddings: https:///abs/2003.07278

[49]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https:///abs/2002.00388

[50]Meta-learning for Few-shot Natural Language Processing: A Survey: https:///abs/2007.09604

[51]Learning from Few Samples: A Survey: https:///abs/2007.15484

[52]Meta-Learning in Neural Networks: A Survey: https:///abs/2004.05439

[53]A Comprehensive Overview and Survey of Recent Advances in Meta

Learning: https:///abs/2004.11149

[54]Baby steps towards few-shot learning with multiple semantics: https:///abs/1906.01905

[55]Meta-Learning: A Survey: https:///abs/1810.03548

[56]A Perspective View And Survey Of Meta-learning: https://www./publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning

[57]A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類(lèi)似文章 更多

    欧美日韩欧美国产另类| 欧美一级特黄大片做受大屁股| 国产精品一区二区不卡中文 | 久久亚洲午夜精品毛片| 日本妇女高清一区二区三区| 国产视频一区二区三区四区| 欧美国产日本免费不卡| 日韩精品一区二区三区含羞含羞草| 国内自拍偷拍福利视频| 欧美一区二区三区性视频| 久久综合日韩精品免费观看| 91精品国产综合久久不卡| 欧美人妻盗摄日韩偷拍| 国产成人国产精品国产三级| 亚洲精品深夜福利视频| 青青操视频在线观看国产| 亚洲国产av在线观看一区 | 国产午夜精品福利免费不| 欧美中文日韩一区久久| 日韩在线免费看中文字幕| 欧美一区二区三区十区| 亚洲熟女一区二区三四区| 99久久国产亚洲综合精品| 久久re6热在线视频| 亚洲午夜av久久久精品| 欧美同性视频免费观看| 中文字幕日韩欧美一区| 久久精品国产熟女精品| 亚洲国产成人一区二区在线观看| 色婷婷丁香激情五月天| 日韩精品第一区二区三区| 亚洲国产精品久久琪琪| 国产又猛又大又长又粗| 成人午夜爽爽爽免费视频| 国产精品一区二区视频成人| 亚洲精品欧美精品一区三区| 亚洲第一香蕉视频在线| 少妇熟女亚洲色图av天堂| 国产精品国产亚洲看不卡| 亚洲精品中文字幕一二三| 免费人妻精品一区二区三区久久久 |