美國奧本大學(xué)Hanqin Tian團(tuán)隊與中國科學(xué)院生態(tài)環(huán)境研究中心合作對1949年至2012年中國小麥、玉米和水稻的溫室氣體排放強度的時空變化率進(jìn)行了國家尺度的最新評估。相關(guān)成果發(fā)表于Global Change Biology(IF=8.555)。 Balancing crop production and greenhouse gases (GHGs) emissions from agriculture soil requires a better understanding and quantification of crop GHGs emission intensity, a measure of GHG emissions per unit crop production. Here, we conduct a state‐of‐the‐art estimate of the spatial‐temporal variability of GHG emission intensities for wheat, maize, and rice in China from 1949‐2012 using an improved agricultural ecosystem model (DLEM‐AG2.0) and meta‐analysis covering 172 field‐GHG emission experiments. The results show that the GHG emission intensities of these croplands from 1949‐2012, on average, were 0.10‐1.31 kg CO2‐eq kg‐1, with a significant increase rate of 1.84‐3.58×10‐3 kg CO2‐eq kg‐1 yr‐1. Nitrogen fertilizer was the dominant factor contributing to the increase in GHG emission intensity in northern China and increased its impact in southern China in the 2000s. Increasing GHG emission intensity implies that excessive fertilizer failed to markedly stimulate crop yield increase in China but still exacerbated soil GHG emissions. This study found that overfertilization of more than 60% was mainly located in the winter wheat‐summer maize rotation systems in the North China Plain, the winter wheat‐rice rotation systems in the middle and lower reaches of the Yangtze River and southwest China, and most of the double rice systems in the South. Our simulations suggest that roughly a one‐third reduction in the current N fertilizer application level over these “overfertilization” regions would not significantly influence crop yield but decrease soil GHG emissions by 29.60%‐32.50% and GHG emission intensity by 0.13‐0.25 kg CO2‐eq kg‐1. This reduction is about 29% and 5% of total agricultural soil GHG emissions in China and the world, respectively. This study suggests that improving nitrogen use efficiency would be an effective strategy to mitigate greenhouse gas emissions and sustain China's food security. 想要平衡作物生產(chǎn)和農(nóng)業(yè)土壤的溫室氣體排放,需要更好地了解和量化作物溫室氣體排放強度。本文使用改進(jìn)的農(nóng)業(yè)生態(tài)系統(tǒng)模型(DLEM-AG2.0)及包含172個野外溫室氣體排放試驗的meta分析,對1949年至2012年中國小麥、玉米和水稻的溫室氣體排放強度的時空變化率進(jìn)行了國家尺度的最新評估。結(jié)果表明,1949—2012年,農(nóng)田的溫室氣體排放強度平均為0.10~1.31 kg CO2‐eq kg‐1,增長率為1.84~3.58×10‐3 kg CO2‐eq kg‐1 yr‐1。2000年以來,氮肥是導(dǎo)致中國北方溫室氣體排放強度增加的主要因素,對南方的影響也有所增加。溫室氣體排放強度的增加意味著過度施肥不僅沒有顯著促進(jìn)作物增產(chǎn),反而加劇了土壤溫室氣體排放。本研究發(fā)現(xiàn),超過60%的過度施肥主要位于華北平原的冬小麥-夏玉米輪作區(qū),長江中下游和西南地區(qū)的冬小麥-水稻輪作區(qū),以及南方大部分的雙稻輪作區(qū)。模擬結(jié)果表明,“過度施肥”地區(qū)當(dāng)前的氮肥施用水平減少約1/3,不會顯著影響作物產(chǎn)量,但會使土壤溫室氣體排放減少29.60%~32.50%,溫室氣體排放強度減少0.13~0.25 kg CO2‐eq kg‐1。這分別相當(dāng)于中國和世界農(nóng)業(yè)土壤溫室氣體排放總量的29%和5%。研究表明,提高氮肥利用效率將是減少溫室氣體排放、保障中國糧食安全的有效策略。 |
|