一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

一文讀完人工智能60年發(fā)展歷史

 老王abcd 2019-10-10

我認為在21世紀,作為一個有知識的公民,需要對(人工智能)這種東西有所了解,因為你想參與討論。你不想被人工智能之類的東西所取代,而是想成為整個生態(tài)系統(tǒng)的活躍分子。

——微軟首席技術官凱文·斯科特(Kevin Scott)

一文讀完人工智能60年發(fā)展歷史

這里是之前人工智能斷史八篇文章的的匯總,您也可以點擊下面的鏈接分節(jié)閱讀。

人工智能斷史分節(jié)閱讀

一文讀完人工智能60年發(fā)展歷史

很高興和大家一起分享關于人工智能的基礎常識性內容,今天我們來聊聊人工智能的過去,從歷史的角度看看人工智能的來龍去脈。

一文讀完人工智能60年發(fā)展歷史

人工智能的誕生,我們要從能夠計算的機器說起。

一文讀完人工智能60年發(fā)展歷史

1000多年前的北宋時期,我國古代人民就發(fā)明算盤作為日常數(shù)學計算的工具,依靠人工手指撥動算珠進行加減乘除四則運算,算盤只是幫助人類記錄和顯示效果,不含有任何智能成分。

一文讀完人工智能60年發(fā)展歷史

大約200年前,英國數(shù)學家巴貝奇設計了第一臺能計算二次多項式的計算機器,叫做差分機,搖動圖中左側的手柄,就可以計算出x2+a這樣式子的值。

由于時代限制,盡管巴貝奇消耗的資金足夠制造好幾艘軍艦,但他最終也沒完成差分機的制造。圖上展示的是后來依照巴貝奇的設計圖紙制造的。大家可以通過下面這個視頻感受一下。

雖然功能有限,但是這個機器第一次真正意義上減少了人類大腦的計算壓力,只要提供手搖動力就能實現(xiàn)計算。機械從此開始具有計算智能。

一文讀完人工智能60年發(fā)展歷史

真正奠定現(xiàn)代計算機理論基礎的是庫爾特.哥德爾,他正式提出可以把人類的全部認知歸結為無數(shù)條定理,并且這些定理都可以用數(shù)學的模式進行表示和邏輯推導。

一文讀完人工智能60年發(fā)展歷史

馮.諾依曼被稱為現(xiàn)代計算機之父,。

他設計了經典的馮.諾依曼結構,就是將軟件命令和數(shù)據(jù)素材都存在一起,整個設備由中央處理器,內存,硬盤,輸入接口,輸出設備組合而成,程序命令按照順序執(zhí)行,其次再考慮時間。

數(shù)十年一直到現(xiàn)在,我們的幾乎所有計算機、筆記本、智能手機都是基于馮諾依曼結構制造和運行的。

一文讀完人工智能60年發(fā)展歷史

圖中展示的是1945年制造的ENIAC,世界上第一臺通用電子計算機。由于命令仍然需要人工輸入和調整,所以經常為了計算某個問題,需要專門人員拔掉或接入上千個插口,圖中兩位淑女就是在做這個工作。1947年馮諾依曼率領團隊在此設備的基礎上進行改造和升級,設計制造了真正意義上的現(xiàn)代電子計算機設備MANIAC。

一文讀完人工智能60年發(fā)展歷史

機器會思考嗎?阿蘭.圖靈在1950年發(fā)表的論文《計算機器與智能》中第一行就提到這個問題。圖靈被稱為計算機科學之父,也是人工智能科學之父。二戰(zhàn)期間,他的團隊在1943年研制成功了被叫做“巨人”的機器,用于破解德軍的密碼電報,這一貢獻讓二戰(zhàn)提前2年結束,挽救了數(shù)千萬人的生命。

一文讀完人工智能60年發(fā)展歷史

圖靈富有傳奇的一生帶有很濃的悲劇色彩,他是世界上最知名的同性戀認識之一,其影響力甚至超過當今蘋果公司的CEO庫克。在當時時代這是不被社會所接受的,盡管圖靈為軍方做出了巨大貢獻,但最終還是被英國政府迫害而死,年僅42歲,當人們發(fā)現(xiàn)圖靈自殺死去的時候,他的桌上留有一個沾滿氰化鉀的毒蘋果。

為了紀念圖靈,1966年美國計算機協(xié)會設立了圖靈獎,這是當今計算機領域全世界最富盛名,最崇高的獎項。

很多人認為喬布斯當年設定的被咬了一口的蘋果標志,就是紀念計算機科學先驅,艾倫.圖靈。

一文讀完人工智能60年發(fā)展歷史

艾倫圖靈對后世最大的理論貢獻之一就是圖靈機。如圖中所示,盒子在帶有符號的軌道上行進,讀取軌道當前符號,然后根據(jù)盒子里面的程序對當前符號和盒子里的數(shù)字進行計算,得到新的數(shù)字并記錄到盒子里,然后盒子就會根據(jù)這個數(shù)字前進或者后退,到達新的軌道位置后再次讀取軌道上的符號進行計算,以此類推。

粗糙的說,和我們平時玩的大富翁游戲差不多,區(qū)別在于大富翁游戲每次前進或者后退的判斷是我們人類根據(jù)紙上的規(guī)則判斷的,而圖靈機的盒子可以自己進行判斷,就仿佛具有智能的生物一樣,可以自己不停的走下去,直到軌道上某個符號代表停止。

圖靈機至今仍然是計算機軟件程序的最基本架構,也是機器智能的開端。

一文讀完人工智能60年發(fā)展歷史

圖靈的另一個偉大理論貢獻是圖靈測試,至今仍然被當做人工智能水平的重要測試標準之一。

圖靈測試是指,人們通過設備和另外一個人進行聊天,可以是文字形式也可以是語音,這不重要。重要的是聊天之后,如果30%的人認為是在和一個真人聊天,而實際對方卻是個機器,那么我們就認為這個機器通過了圖靈測試,它是具有智能的。

以現(xiàn)在的計算機人工智能技術來說,30%的比例定的有些低,近年來很多人工智能對話程序都已經能夠通過圖靈測試。

一文讀完人工智能60年發(fā)展歷史

上面介紹的內容可能有些枯燥,這里推薦三部電影大家可以去觀看,第一本中文名叫做《隱藏人物》,展示了計算機技術被應用之前,美國宇航局如何利用大量人工計算來實現(xiàn)登月任務的。第二本是《模仿游戲》,由奇異博士主演,精彩演繹了艾倫圖靈坎坷的一生。最后一本是法鯊主演的《喬布斯》,展現(xiàn)了蘋果公司歷史發(fā)展的精彩瞬間。

一文讀完人工智能60年發(fā)展歷史

如果說人工智能誕生需要三個條件,一是計算機,二是圖靈測試,那么第三就是達特茅斯會議。

1956年,一群科學家聚會在美國漢諾思小鎮(zhèn)寧靜的達特茅斯學院,他們試圖利用暑假期間的兩個月進行封閉式的討論和研究,而這次會議的主題就是“達特茅斯夏季人工智能研究計劃”。

這張圖片是會議之后半個世紀2006年拍攝的當年主要參會者的合影,最左邊的是特倫查德摩爾,數(shù)學家和計算機科學家,曾在IBM的沃森研究中心工作;

左數(shù)第二位是約翰麥卡錫,他是達特茅斯會議的發(fā)起人,1971年圖靈獎得主,Lisp語言創(chuàng)始人。

中間的是馬文閔斯基,知名的認知科學家,曾在1951年建立了第一個神經網絡,模擬了40個神經元。

右數(shù)第二位是奧利弗賽弗里奇,被稱為“機器感知之父”。

最右側的是雷所羅門諾夫,經驗概率理論的發(fā)明人。

一文讀完人工智能60年發(fā)展歷史

雖然這個會議實際只進行了一個多月,也沒產生什么具有影響力的研究成果,但是這個會議首次正式提出人工智能一詞,Artificial Intelligence,AI,一直被沿用至今,所以此次會議也就被認為是人工智能正式誕生的元年了。

一文讀完人工智能60年發(fā)展歷史

達特茅斯會議之后,人工智能研究進入了20年的黃金時代。

一文讀完人工智能60年發(fā)展歷史

在美國,成立于1958年的國防高級研究計劃署對人工智能領域進行了數(shù)百萬的投資,讓計算機科學家們自由的探索人工智能技術新領域。

一文讀完人工智能60年發(fā)展歷史

這個階段誕生了世界上第一個聊天程序ELIZA,它是由麻省理工學院的人工智能學院在1964到1966年期間編寫的,能夠根據(jù)設定的規(guī)則,根據(jù)用戶的提問進行模式匹配,然后從預先編寫好的答案庫中選擇合適的回答。

這也是第一個嘗試通過圖靈測試的軟件程序,ELIZA曾模擬心理治療醫(yī)生和患者交談,在首次使用的時候就騙過了很多人。

“對話就是模式匹配”,這是計算機自然語言對話技術的開端。

一文讀完人工智能60年發(fā)展歷史

1959年,計算機游戲先驅亞瑟塞繆爾在IBM的首臺商用計算機IBM 701上編寫了西洋跳棋程序,這個程序順利戰(zhàn)勝了當時的西洋棋大師羅伯特尼賴。

西洋跳棋是個簡單的游戲,棋子每次只能向斜對角方向移動,但如果斜對角有敵方棋子并且可以跳過去,那么就把敵方這個棋子吃掉。

塞繆爾的跳棋程序會對所有可能跳法進行搜索,并找到最佳方法?!巴评砭褪撬阉鳌保沁@個時期主要研究方向之一。

一文讀完人工智能60年發(fā)展歷史

在日本,早稻田大學1967年啟動了WABOT項目,至1972年完成了第一代機器人產品WABOT-1,有雙手雙腳,有攝像頭視覺和聽覺裝置。

雖然這個機器人能夠搬東西也能移動雙腳,但每走一步要45秒,而且只能走10厘米,相當?shù)谋恐鼐徛?/p>

一文讀完人工智能60年發(fā)展歷史

在這個黃金時代里,約翰麥卡錫開發(fā)了LISP語音,成為以后幾十年來人工智能領域最主要的編程語言;馬文閔斯基對神經網絡有了更深入的研究,也發(fā)現(xiàn)了簡單神經網絡的不足;多層神經網絡、反向傳播算法開始出現(xiàn);專家系統(tǒng)也開始起步;第一臺工業(yè)機器人走上了通用汽車的生產線;也出現(xiàn)了第一個能夠自主動作的移動機器人。

一文讀完人工智能60年發(fā)展歷史

經典科幻片《2001:太空漫游》也在1968年上映,宇宙飛船搭載的人工智能電腦HAL9000讓所有觀眾印象深刻。

一文讀完人工智能60年發(fā)展歷史

“三到八年內,我們將建造出和人一樣智能的機器”,“十年內,計算機將成為國際象棋冠軍”,“二十年內,機器將可以做任何人類工作”,這個時代,科學家們甚至整個世界都對人工智能技術充滿樂觀的期望。

一文讀完人工智能60年發(fā)展歷史

出生就遇到黃金時代的人工智能,過度高估了科學技術的發(fā)展速度,太過樂觀的承諾無法按時兌現(xiàn)的時候,就引發(fā)了全世界對人工智能技術的懷疑。

一文讀完人工智能60年發(fā)展歷史

1973年,著名數(shù)學拉特希爾家向英國政府提交了一份關于人工智能的研究報告,對當時的機器人技術、語言處理技術和圖像識別技術進行了嚴厲的批評,尖銳的指出人工智能那些看上去宏偉的目標根本無法實現(xiàn),研究已經完全失敗。此后,科學界對人工智能進行了一輪深入的拷問,使AI的遭受到嚴厲的批評和對其實際價值的質疑。

隨后,各國政府和機構也停止或減少了資金投入,人工智能在70年代陷入了第一次寒冬。

一文讀完人工智能60年發(fā)展歷史

這次寒冬不是偶然的。在人工智能的黃金時代,雖然創(chuàng)造了各種軟件程序或硬件機器人,但它們看起來都只是“玩具”,要邁進到實用的工業(yè)產品,科學家們確實一些遇到了不可戰(zhàn)勝的挑戰(zhàn)。

讓科學家們最頭痛的就是雖然很多難題理論上可以解決,看上去只是少量的規(guī)則和幾個很少的棋子,但帶來的計算量增加卻是驚人的增長,實際上根本無法解決。就像26個字母魔法般的組合成數(shù)萬個單詞,進而在不同語境下組合成無限種句子。比如運行某個有2的100次方個計算的程序,即使用現(xiàn)在很快的計算機也要計算數(shù)萬億年,這是不可想象的。

一文讀完人工智能60年發(fā)展歷史

就像飛機需要有足夠的馬力才能從跑道上起飛,人工智能也需要足夠的計算力才能真正發(fā)揮作用。當時有科學家計算得出,要用計算機模擬人類視網膜視覺至少需要執(zhí)行10億次指令,而1976年世界最快的計算機Cray-1造價數(shù)百萬美元,但速度還不到1億次,普通電腦的計算速度還不到一百萬次。

五十年后,現(xiàn)在我們的筆記本或者手機能夠依賴攝像頭輕松實現(xiàn)人臉識別,這些設備的運算速度其實都已經超過百億次,當然沒有壓力。

一文讀完人工智能60年發(fā)展歷史

人工智能還需要大量的人類經驗和真實世界的數(shù)據(jù),要知道即使一個三歲嬰兒的智能水平,也是觀看過數(shù)億張圖像之后才形成的。由于當時計算機和互聯(lián)網都沒有普及,或者如此龐大數(shù)據(jù)是不可能的任務。

一文讀完人工智能60年發(fā)展歷史

很多人工智能科學家開始發(fā)現(xiàn),數(shù)學推理、代數(shù)幾何這樣的人類智能,計算機可以用很少的計算力輕松完成,而對于圖像識別、聲音識別和自由運動這樣人類無須動腦,靠本能和直覺就能完成的事情,計算機卻需要巨大的運算量才可能實現(xiàn)。

這個論調一方面讓人懷疑早期神經網絡算法的有效性和實用性,另一方面也導致人工智能技術向更加功利化、實用化方向發(fā)展,不再像黃金時代那樣充滿想象,充滿對模擬通用人類智能的追求。

一文讀完人工智能60年發(fā)展歷史

曾經一度被非??春玫纳窠浘W絡技術,過分依賴于計算力和經驗數(shù)據(jù)量,因此長時期沒有取得實質性的進展,1969年馬文敏斯基與人合著的《感知器》一書,這本書闡明了神經網絡現(xiàn)階段的真實能力,也表明之前很多過于樂觀的預測是難以實現(xiàn)的理論。盡管書中內容科學客觀,但也對神經網絡技術產生了毀滅性的打擊,后續(xù)十年內幾乎沒人投入更進一步的研究。

當然,十年河東十年河西,數(shù)十年后,神經網絡又已經成我們現(xiàn)在人工智能的關鍵技術。

一文讀完人工智能60年發(fā)展歷史

1979年,斯坦福大學制造了有史以來最早的無人駕駛車Stanford Cart,它依靠視覺感應器能夠在沒有人工干預的情況下,自主的穿過散亂扔著椅子的房間,雖然可能有點慢,需要幾個小時才能完成。

一文讀完人工智能60年發(fā)展歷史

專家系統(tǒng)在這個時代的末尾出現(xiàn),并開啟了下一個時代。

1978年,卡耐基梅隆大學開始開發(fā)一款能夠幫助顧客自動選配計算機配件的軟件程序XCON,并且在1980年真實投入工廠使用,這是個完善的專家系統(tǒng),包含了設定好的超過2500條規(guī)則,在后續(xù)幾年處理了超過80000條訂單,準確度超過95%,每年節(jié)省超過2500萬美元。

一文讀完人工智能60年發(fā)展歷史

1980年卡耐基梅隆大學(CMU)研發(fā)的XCON正式投入使用,這成為一個新時期的里程碑,專家系統(tǒng)開始在特定領域發(fā)揮威力,也帶動整個人工智能技術進入了一個繁榮階段。

一文讀完人工智能60年發(fā)展歷史

專家系統(tǒng)的起源可以追溯到黃金時代,1965年,在斯坦福大學,美國著名計算機學家費根鮑姆帶領學生開發(fā)了第一個專家系統(tǒng)Dendral,這個系統(tǒng)可以根據(jù)化學儀器的讀數(shù)自動鑒定化學成分。

費根鮑姆還是斯坦福大學認知實驗室的創(chuàng)始人,70年代在這里還開發(fā)了另外一個用于血液病診斷的專家程序MYCIN(霉素),這可能是最早的醫(yī)療輔助系統(tǒng)軟件。

一文讀完人工智能60年發(fā)展歷史

專家系統(tǒng)其實就是一套計算機軟件,它往往聚焦于單個專業(yè)領域,模擬人類專家回答問題或提供知識,幫助工作人員作出決策。它一方面需要人類專家整理和錄入龐大的知識庫(專家規(guī)則),另一方面需要計算機科學家編寫程序,設定如何根據(jù)提問進行推理找到答案,也就是推理引擎。

專家系統(tǒng)把自己限定在一個小的范圍,避免了通用人工智能的各種難題,它充分利用現(xiàn)有專家的知識經驗,務實的解決人類特定工作領域需要的任務,它不是創(chuàng)造機器生命,而是制造更有用的活字典,好工具。

XCON取得的巨大商業(yè)成功,80年代三分之二的世界500強公司開始開發(fā)和部署各自領域的專家系統(tǒng),據(jù)統(tǒng)計,在1980到1985這5年間,就有超過10億美元投入到人工智能領域,大部分用于企業(yè)內的人工智能部門,也涌現(xiàn)出很多人工智能軟硬件公司。

一文讀完人工智能60年發(fā)展歷史

計算機技術和人工智能技術的快速發(fā)展,點燃了日本政府的熱情。1982年,日本國際貿易工業(yè)部發(fā)起了第五代計算機系統(tǒng)研究計劃,預計投入8.5億美元,目的是搶占未來信息技術的先機,創(chuàng)造具有劃時代意義的超級人工智能計算機。

日本嘗試使用大規(guī)模多CUP并行計算來解決人工智能計算力問題,并希望打造面向更大的人類知識庫的專家系統(tǒng)來實現(xiàn)更強的人工智能。圖中展示的就是當時日本研發(fā)的具有512顆CPU并行計算能力的第五代計算機。

這個項目在十年后基本以失敗結束,主要是當時低估了PC計算機發(fā)展的速度,尤其是intel的x86芯片架構在很快的幾年內就發(fā)展到足以應付各個領域專家系統(tǒng)的需要。

然而,第五代計算機計劃極大的推進了日本工業(yè)信息化進程,加速了日本工業(yè)的快速崛起;另一方面,這開創(chuàng)了并行計算的先河,至今我們使用的多核處理器和神經網絡芯片,都受到了20多年前這個計劃的啟發(fā)。

一文讀完人工智能60年發(fā)展歷史

當各個垂直領域的專家系統(tǒng)紛紛取得成功之后,尤其是日本試圖搶占先機的第五代計算機計劃的刺激,美國和很多歐洲國家也加入到這個賽道中來。

1982年美國數(shù)十家大公司聯(lián)合成立微電子與計算機技術公司(MCC),該公司1984發(fā)起了人工智能歷史上最大也是最有爭議性的項目,Cyc,這個項目至今仍然在運作。

Cyc項目的目的是建造一個包含全人類全部知識的專家系統(tǒng),“包含所有專家的專家”。截止2017年,它已經積累了超過150萬個概念數(shù)據(jù)和超過2000萬條常識規(guī)則,曾經在各個領域產生超過100個實際應用,它也被認為是當今最強人工智能IBM Woston的前身。

但隨著科技的發(fā)展,21世紀到來之后,Cyc這種傳統(tǒng)依賴人類專家手工整理知識和規(guī)則的技術,受到了網絡搜索引擎技術、自然語言處理技術以及神經網絡等新技術的挑戰(zhàn),未來發(fā)展并不明朗。

一文讀完人工智能60年發(fā)展歷史

沉寂10年之后,神經網絡又有了新的研究進展,尤其是1982年英國科學家霍普菲爾德幾乎同時與杰弗里·辛頓發(fā)現(xiàn)了具有學習能力的神經網絡算法,這使得神經網絡一路發(fā)展,在后面的90年代開始商業(yè)化,被用于文字圖像識別和語音識別。

圖中是霍普菲爾德。

一文讀完人工智能60年發(fā)展歷史

另一邊,在德國的1986年,慕尼黑的聯(lián)邦國防軍大學把一輛梅賽德斯-奔馳面包車安裝上了計算機和各種傳感器,實現(xiàn)了自動控制方向盤、油門和剎車。這是真正意義上的第一輛自動駕駛汽車,叫做VaMoRs,開起來時速超過80公里。

圖中看起來這輛車很笨重,這是由于當時硬件發(fā)展限制,整個車的后半部分都是用來安裝計算機設備的,攝像頭在前玻璃后視鏡位置附近。

一文讀完人工智能60年發(fā)展歷史

在1970年代,人工智能技術的發(fā)展,對硬件計算和存儲都有著越來越高的要求。而在當時,全世界的計算機硬件結構和軟件系統(tǒng)都沒有統(tǒng)一的標準,各國政府和大企業(yè)都希望占領先機掌握標準制定權。

人工智能領域當時主要使用約翰麥卡錫的LISP編程語言,所以為了提高各種人工智能程序的運輸效率,很過研究機構或公司都開始研發(fā)制造專門用來運行LISP程序的計算機芯片和存儲設備,打造人工智能專用的LISP機器。

這些機器可以比傳統(tǒng)計算機更加高效的運行專家系統(tǒng)或者其他人工智能程序,上面專家系統(tǒng)配圖展示的就是一臺商用LISP機器。

一文讀完人工智能60年發(fā)展歷史

雖然LISP機器逐漸取得進展,但同時80年代也正是個人電腦崛起的時間,IBM PC和蘋果電腦快速占領整個計算機市場,它們的CPU頻率和速度穩(wěn)步提升,越來越快,甚至變得比昂貴的LISP機器更強大。

直到1987年,專用LISP機器硬件銷售市場嚴重崩潰,人工智能領域再一次進入寒冬。

一文讀完人工智能60年發(fā)展歷史

專家系統(tǒng)最初取得的成功是有限的,它無法自我學習并更新知識庫和算法,維護起來越來越麻煩,成本越來越高。以至于很多企業(yè)后來都放棄陳舊的專家系統(tǒng)或者升級到新的信息處理方式。

80年代末,包括日本第五的計算機計劃在內的很多超前概念都注定失敗,原本科幻美好的人工智能產品承諾都無法真正兌現(xiàn)。

人們開始對于專家系統(tǒng)和人工智能的信任都產生了危機,一股強烈的聲音開始對當前人工智能發(fā)展方向提出質疑,他們認為使用人類設定的規(guī)則進行編程,這種自上而下的方法是錯誤的。大象不玩象棋,但大象可以從現(xiàn)實中學會識別環(huán)境并作出判斷,人工智能技術也應該擁有身體感知能力,從下而上才能實現(xiàn)真正的智能。這種觀點是超前的,但也推動了后續(xù)神經網絡技術的壯大和發(fā)展。

一文讀完人工智能60年發(fā)展歷史

硬件市場的潰敗和理論研究的迷茫,加上各國政府和機構紛紛停止向人工智能研究領域投入資金,導致了數(shù)年的低谷,但另一方面也取得了一些重要成就。

1988年,美國科學家朱迪亞·皮爾將概率統(tǒng)計方法引入人工智能的推理過程中,這對后來人工智能的發(fā)展起到了重大影響。

一文讀完人工智能60年發(fā)展歷史

IBM的沃森研究中心把概率統(tǒng)計方法引入到人工智能的語言處理中,Candide項目基于200多萬條語句實現(xiàn)了英語和法語之間的自動翻譯。同年,英國人工智能科學家卡朋特開發(fā)了Jabberwacky聊天程序,嘗試更好的通過圖靈測試,至今這個程序的后續(xù)版cleverbot仍然很多人在使用。

一文讀完人工智能60年發(fā)展歷史

1992年,當時在蘋果公司任職的華人李開復,他使用統(tǒng)計學的方法,設計開發(fā)了具有連續(xù)語音識別能力的助理程序,Casper,這也是二十年后Siri最早的原型。Casper可以實時識別語音命令并執(zhí)行計算機辦公操作,類似于語音控制做word文檔。

你可以點擊這里觀看視頻演示

一文讀完人工智能60年發(fā)展歷史

1989年,AT&T貝爾實驗室的雅恩·樂昆和團隊使用卷積神經網絡技術,實現(xiàn)了人工智能識別手寫的郵政編碼數(shù)字圖像。

一文讀完人工智能60年發(fā)展歷史

1993年,美國科幻小說作家弗諾·芬奇發(fā)布了《即將到來的奇點》一文,三十年內我們將發(fā)明超越人類的智能,人類社會將被終結。

一文讀完人工智能60年發(fā)展歷史

弗諾·芬奇的奇點理論只會讓人感到不安。經歷過半個世紀風雨起伏的人工智能行業(yè),終于學會了低調行事。

在此后的近二十年,一方面人工智能技術逐漸與計算機和軟件技術深入融合,為了讓自己的工作內容聽起來更切實而不科幻,很多研究者都不再使用人工智能這個術語,而是叫做諸如數(shù)據(jù)分析、商業(yè)智能、信息化、知識系統(tǒng)、計算智能等詞匯,研究成果或開發(fā)的功能往往也直接成為軟件工程的一部分。

另一方面,在這個階段,人工智能算法理論的進展并不多,很多研究者都只是基于以前時代的理論,依賴于更強大更快速的計算機硬件就可以取得突破性的成果。

一文讀完人工智能60年發(fā)展歷史

1995年,理查德華萊士收到60年代聊天程序ELIZA的啟發(fā),開發(fā)了新的聊天機器人程序Alice,它能夠利用互聯(lián)網不斷增加自身的數(shù)據(jù)集,優(yōu)化內容。

雖然Alice也并不能真的通過圖靈測試,但它的設計思想影響深遠,2013年奧斯卡獲獎影片《her(她)》就是以Alice為原型創(chuàng)作的。

一文讀完人工智能60年發(fā)展歷史

90年代最具轟動的莫過于1997年,IMB的計算機深藍Deep blue戰(zhàn)勝了人類世界象棋冠軍卡斯帕羅夫。

實際上,在1996年,深藍就曾經與卡斯帕羅夫對戰(zhàn),但并沒有取勝,還受到卡斯帕羅夫的嘲笑,它認為計算機下棋缺乏悟性,永遠不會戰(zhàn)勝人類。

1996年失敗之后,IBM對深藍進行了升級,它擁有480塊專用的CPU,運算速度翻倍,每秒可以預測2億次,可以預測未來八步或更多的棋局。這種情況下人類冠軍只能惜敗。

戰(zhàn)后,卡斯帕羅夫表示深藍有時可以“像上帝一樣思考”。雖然這次世紀之戰(zhàn)只是計算機依賴速度和蠻力,在規(guī)則明確、條件透明的游戲中才能取得的勝利。

一文讀完人工智能60年發(fā)展歷史

1997年,兩位德國科學霍克賴特和施米德赫伯 提出了長期短期記憶(LSTM) 這是一種今天仍用于手寫識別和語音識別的遞歸神經網絡,對后來人工智能的研究有著深遠影響。

一文讀完人工智能60年發(fā)展歷史

1998年,美國公司創(chuàng)造了第一個寵物機器人Furby。

而熱衷于機器人技術的日本,2000年,本田公司發(fā)布了機器人產品ASIMO,經過十多年的升級改進,目前已經是全世界最先進的機器人之一。

點擊這里觀看阿西莫精彩視頻

一文讀完人工智能60年發(fā)展歷史

2001年,由斯皮爾伯格導演的電影《AI》上映,影片描述了未來人與機器人共生世界的種種悖論,人工智能一度引發(fā)社會關注,但關于技術的主題很快就被淡忘,數(shù)年后的觀眾只記得關于人性、關于愛與被愛的悲情故事。

一文讀完人工智能60年發(fā)展歷史

家用機器人一直是人們關注的重點,1996年美國公司伊萊克斯推出了第一款機吸塵器機器人,也就是現(xiàn)在大家在使用的掃地機器人,但由于產品缺陷很多很快以失敗告終。

2002年,美國先進的機器人技術公司iRobot面向市場推出了Roomba掃地機器人,大獲成功。iRobot至今仍然是掃地機器最好品牌之一。

一文讀完人工智能60年發(fā)展歷史

2004年,美國神經科學家杰夫·霍金斯出版了《人工智能的未來》一書,深入討論了全新的大腦記憶預測理論,指出了依照此理論如何去建造真正的智能機器,這本書對后來神經科學的深入研究產生了深刻的影響。

一文讀完人工智能60年發(fā)展歷史

2006年,杰弗里辛頓出版了《Learning Multiple Layers of Representation》奠定了后來神經網絡的全新的架構,至今仍然是人工智能深度學習的核心技術。

一文讀完人工智能60年發(fā)展歷史

2007年,在斯坦福任教的華裔科學家李飛飛,發(fā)起創(chuàng)建了ImageNet項目。

為了向人工智能研究機構提供足夠數(shù)量可靠地圖像資料,ImageNet號召民眾上傳圖像并標注圖像內容。

ImageNet目前已經包含了1400萬張圖片數(shù)據(jù),超過2萬個類別。

自2010年開始,ImageNet每年舉行大規(guī)模視覺識別挑戰(zhàn)賽,全球開發(fā)者和研究機構都會參與貢獻最好的人工智能圖像識別算法進行評比。尤其是2012年由多倫多大學在挑戰(zhàn)賽上設計的深度卷積神經網絡算法,被業(yè)內認為是深度學習革命的開始。

一文讀完人工智能60年發(fā)展歷史

華裔科學家吳恩達及其團隊在2009年開始研究使用圖形處理器(GPU而不是CPU)進行大規(guī)模無監(jiān)督式機器學習工作,嘗試讓人工智能程序完全自主的識別圖形中的內容。

2012年,吳恩達取得了驚人的成就,向世人展示了一個超強的神經網絡,它能夠在自主觀看數(shù)千萬張圖片之后,識別那些包含有小貓的圖像內容。這是歷史上在沒有人工干預下,機器自主強化學習的里程碑式事件。

一文讀完人工智能60年發(fā)展歷史

在人工智能技術的發(fā)展歷史上,美國軍方的身影一致若隱若現(xiàn),曾經在寒冬期放棄人工智能戰(zhàn)略的DARPA,早已再次加入行業(yè)戰(zhàn)場。

2004年開始,DARPA連續(xù)組織了多場自動駕駛汽車技術挑戰(zhàn)賽,試圖探索利用人工智能實現(xiàn)更強的軍事自動化,而到2012年后,DARPA挑戰(zhàn)賽又轉向機器人領域,希望在未來通過機器人技術提高作戰(zhàn)效率。

一文讀完人工智能60年發(fā)展歷史

2009年,谷歌開始秘密測試無人駕駛汽車技術;至2014年,谷歌就成為第一個在通過美國州自駕車測試的公司。

一文讀完人工智能60年發(fā)展歷史

2011年,又是IBM,這次是人類的常識智力問答,在綜藝競答類節(jié)目《危險邊緣》中,IBM的沃森系統(tǒng)與真人一起搶答競猜,雖然沃森的語言理解能力也鬧出了一些小笑話,但憑借其強大的知識庫仍然最后戰(zhàn)勝了兩位人類冠軍而獲勝。

一文讀完人工智能60年發(fā)展歷史

世紀之交的二十年中,人工智能技術與計算機軟件技術深度整合,也滲透到幾乎所有的產業(yè)中去發(fā)揮作用,同時,人工智能技術也越來越注重數(shù)學,注重科學,逐步走向成熟。

在21世紀第一個十年之前,對于簡單的人類感知和本能,人工智能技術一直處于落后或追趕,而到2011年,在圖像識別領域或常識問答比賽上,人工智能都開始表現(xiàn)出超過人類的水平,新的十年將會是人工智能在各個專業(yè)領域取得突破的時代。

一文讀完人工智能60年發(fā)展歷史

2008以后,隨著移動互聯(lián)網技術、云計算技術的爆發(fā),積累了歷史上超乎想象的數(shù)據(jù)量,這為人工智能的后續(xù)發(fā)展提供了足夠的素材和動力。

AI人工智能,Big data大數(shù)據(jù),Cloud云計算,以及正在深入展開的IoT物聯(lián)網技術,共同構成了21世紀第二個十年的技術主旋律。

一文讀完人工智能60年發(fā)展歷史

2014年,伊恩·古德費羅提出GANs生成對抗網絡算法,這是一種用于無監(jiān)督學習的人工智能算法,這種算法由生成網絡和評估網絡構成,以左右互搏的方式提升最終效果,這種方法很快被人工智能很多技術領域采用。

一文讀完人工智能60年發(fā)展歷史

2016年和2017年,谷歌發(fā)起了兩場轟動世界的圍棋人機之戰(zhàn),其人工智能程序AlphaGo連續(xù)戰(zhàn)勝曾經的圍棋世界冠軍韓國李世石,以及現(xiàn)任的圍棋世界冠軍中國的柯潔。

曾經的宿敵,人類頂級圍棋智慧的代表,如今已紛紛敗在計算機高速的計算能力和優(yōu)秀的人工智能算法之下。

“AlphaGo對我來說,是上帝般的存在?!笨聺嵸惡笕绱嗽u價,“對于AlphaGo的自我進步速度來說,人類的存在很多余?!?/p>

一文讀完人工智能60年發(fā)展歷史

AlphaGo背后是谷歌收購不久的英國公司Deep Mind,專注于人工智能和深度學習技術,目前該公司的技術不僅用于圍棋比賽,更主要用于谷歌的搜索引擎、廣告算法以及視頻、郵箱等產品。人工智能技術已經成為谷歌的重要支撐技術之一。

一文讀完人工智能60年發(fā)展歷史

谷歌2013年還曾收購了世界頂級機器人技術公司,波士頓動力學公司,2017年又出售給日本軟銀公司。

波士頓動力學崛起于美國國防部的DARPA大賽,其生產的雙足機器人和四足機器狗具有超強的環(huán)境適應能力和未知情況下的行動能力。

一文讀完人工智能60年發(fā)展歷史

圖像識別技術正逐漸從成熟走向深入。從日常的人臉識別到照片中的各種對象識別,從手機的人臉解鎖到AR空間成像技術,以及圖片、視頻的語義提取等等,機器視覺還有很長的路要走,也還有巨大的潛力等待挖掘。

一文讀完人工智能60年發(fā)展歷史

2010年亞馬遜公司就開始研發(fā)語音控制的智能音箱,2014年正式發(fā)布了產品Echo,這是一款可以通過語音控制家庭電器和提供資訊信息的音箱產品。

一文讀完人工智能60年發(fā)展歷史

隨后谷歌、蘋果都推出類似產品,國內廠商如阿里、小米、百度、騰訊等也都紛紛效仿,一時間智能音箱產品遍地開花,都試圖搶占用戶家庭客廳的入口。

一文讀完人工智能60年發(fā)展歷史

智能音箱的背后技術是語音助手,而目前最強技術都掌握在微軟、谷歌、亞馬遜、蘋果和三星等幾個巨頭手中。

目前來看,常規(guī)語音識別技術已經比較成熟,發(fā)音技術有待完善。而真正的語義理解技術還都處于比較初級的階段,對于松散自由的口語表述,語音助手往往無法獲得重點,更無法正確回答。

2018年,谷歌發(fā)布了語音助手的升級版演示,展示了語音助手自動電話呼叫并完成主人任務的場景。其中包含了多輪對話、語音全雙工等新技術,這可能預示著新一輪自然語言處理和語義理解技術的到來。

一文讀完人工智能60年發(fā)展歷史

人工智能經歷了半個多世紀的發(fā)展歷程,涌現(xiàn)出了眾多影響深遠的技術、學者、公司和產品。

一文讀完人工智能60年發(fā)展歷史

我們參照維基百科,把整個人工智能的歷史分為七個時期。

1956年達特茅斯會議之前,第二次世界大戰(zhàn)促科學技術的快速發(fā)展,圖靈、哥德爾、馮諾依曼、克勞德香農等偉大的先驅者奠定了人工智能和計算機技術的基礎。

達特茅斯會議之后,人工智能相關研究進入了野蠻生長的黃金時代。一方面,馬文閔斯基建立了沿用至今的神經網絡的基本算法結構;約翰麥卡錫發(fā)布了主導人工智能研究幾十年的LISP語言;亞瑟塞繆爾開發(fā)了第一個可以戰(zhàn)勝人類的西洋跳棋程序;這些對后世都產生了關鍵性影響。另一方面,麻省理工開發(fā)了世界第一個聊天機器人ELIZA,還出現(xiàn)了第一個自主運動的機器人shakey,他們試圖制造具有通用智能和移動能力的產品,這些瘋狂的想法也推高了整個社會對AI的期望和幻想。

十多年過去之后,當人們發(fā)現(xiàn)人工智能曾經的那些美好承諾都沒能兌現(xiàn),或者實際產品和預期相差太多的時候,就會產生質疑甚至憤怒。1973年萊特希爾報告成為了導火索事件,人們開始認為人工智能技術只是科學家和科幻小說家們描繪的海市蜃樓,并不會產生實際的作用。社會輿論的否定和支持資金的撤離,讓人工智能行業(yè)陷入第一個寒冬。

寒冬并沒有讓所有研究者止步,只是更努力的尋找如何讓人工智能創(chuàng)造實用價值的方法。70年代末80年代初,專注小范圍知識領域的專家系統(tǒng)開始崛起并創(chuàng)造了巨大價值,這引發(fā)了工業(yè)自動化信息化技術革命。日本發(fā)起了第五代計算機計劃,其他國家也紛紛加入這場競賽,資金和資源再一次涌入人工智能領域,80年代再次成為繁榮發(fā)展時期。

但好景不長。人工智能領域的瘋狂投入讓這個行業(yè)產生了冒進,尤其是人工智能專用硬件LISP機器的發(fā)展顯得混亂且緩慢。計算機領域不進則退,IBM、蘋果在這個時機發(fā)起了個人計算機革命,笨重的LISP機器在短短幾年內就被完全擊潰。整個行業(yè)似乎都被將被顛覆,這是一個沉痛又短暫的寒冬期。

通用計算機設備的勝利,讓傳統(tǒng)的人工智能程序技術逐漸被埋葬,但也讓人工智能真正開始和現(xiàn)代計算機技術進行深入融合。在世紀相交的二十年內,人工智能技術似乎沉睡隱身了,除了1997年IMB炒作的國際象棋人機大戰(zhàn)之外,幾乎很少聽到AI的聲音。然而這也正是人工智能韜光養(yǎng)晦低調發(fā)展的時代,它利用計算機和互聯(lián)網的發(fā)展機遇,變身商業(yè)智能、數(shù)據(jù)分析、信息化、自動化、知識工程等名稱,滲透到社會生產和生活的每個角落。

計算機和互聯(lián)網一方面為人工智能提供了創(chuàng)造商業(yè)價值的載體,讓AI技術研究可以穩(wěn)步推進,另一方面也為人工智能的爆發(fā)積累了強大的運算力和經驗數(shù)據(jù)。芯片技術、數(shù)據(jù)庫技術以及神經網絡算法的不斷發(fā)展,讓人工智能在越來越多賽事上創(chuàng)造奇跡,甚至超越人類。2011年沃森在自然語言常識問答比賽中戰(zhàn)勝人類選手,DARPA挑戰(zhàn)賽無人駕駛汽車時速可以達到80公里以上,ImageNet挑戰(zhàn)賽上圖像識別算法準確度超越人類,同年吳恩達創(chuàng)造了具有完全自學習能力可以識別貓的神經網絡模型...

21世紀第二個十年,隨著移動互聯(lián)、大數(shù)據(jù)、云計算、物聯(lián)網技術的迸發(fā),人工智能技術也邁入了新的融合時代,從AlphaGo戰(zhàn)勝李世石,到微軟語音識別技術超越人類,到谷歌自動駕駛、波士頓動力學機器人,到滿布市場的智能音箱,到每個人手機中的神經網絡芯片和智能程序,人工智能從無形發(fā)展到有形的陪伴每個人的生產生活,半個多世紀前科學家曾經描繪的美好圖景正在一步一步被人工智能技術所實現(xiàn)。

未來已來,AI已在。

附注:

整篇文章是參照維基百科進行整理和編寫的。

這是一個很簡要的歷史提綱,可能忽略了很多重要的歷史性事件。如果你發(fā)覺我有遺漏,歡迎留言,一起幫我把這個文章補全。

這個文章是簡單的按照時間順序組織的,其實人工智能整個歷史有幾條不同的線索,比如通用智能發(fā)展線索、神經網絡發(fā)展線索、機器人技術發(fā)展線索、人工智能社會哲學與倫理發(fā)展線索等等,我相信如果能夠有機會對每個線索進行分開研究一定能得到很多新的結論。

    本站是提供個人知識管理的網絡存儲空間,所有內容均由用戶發(fā)布,不代表本站觀點。請注意甄別內容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權內容,請點擊一鍵舉報。
    轉藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多

    福利专区 久久精品午夜| 日韩精品一区二区毛片| 欧美日韩精品综合在线| 丝袜人妻夜夜爽一区二区三区| 国产精品免费自拍视频| 国产精品视频一区二区秋霞| 不卡中文字幕在线免费看| 亚洲第一视频少妇人妻系列| 日本精品中文字幕人妻| 国产精品白丝久久av| 国产成人免费激情视频| 亚洲国产中文字幕在线观看| 日本高清视频在线播放| 99精品人妻少妇一区二区人人妻| 人妻一区二区三区在线| 国产欧美日韩视频91| 成人午夜视频在线播放| 成人精品一区二区三区综合| 亚洲国产精品久久网午夜| 日本在线视频播放91| 人妻巨大乳一二三区麻豆| 亚洲黑人精品一区二区欧美| 国产一区二区久久综合| 亚洲日本久久国产精品久久| 国产精品香蕉在线的人| 东京热电东京热一区二区三区 | 亚洲熟妇熟女久久精品| 国产内射一级一片内射高清视频 | 亚洲熟女熟妇乱色一区| 日韩特级黄片免费在线观看 | 激情内射日本一区二区三区| 婷婷激情五月天丁香社区| 国产亚洲精品岁国产微拍精品| 好吊视频有精品永久免费| av在线免费观看在线免费观看| 日本加勒比在线观看一区| 在线免费不卡亚洲国产| 懂色一区二区三区四区| 在线观看视频日韩成人| 色婷婷亚洲精品综合网| 日韩中文字幕人妻精品|