【實(shí)驗(yàn)?zāi)康摹?/p> 輸出7路占空比不同的PWM信號(hào)是各個(gè)版本ST庫必備的例子。本實(shí)驗(yàn)的主要目的不是表現(xiàn)ST芯片PWM功能的強(qiáng)大,而是要完成輸出的精確計(jì)算。 【實(shí)驗(yàn)內(nèi)容】 輸出7路PWM信號(hào),并用示波器測(cè)量輸出。 【實(shí)驗(yàn)原理】 1、時(shí)基單元初始化 TIM1和TIM8使用內(nèi)部時(shí)鐘時(shí),時(shí)鐘由APB2提供。但是定時(shí)器的時(shí)鐘并不是直接由APB2提供,而是來自于輸入為APB2的一個(gè)倍頻器。當(dāng)APB2的與分頻系數(shù)為1時(shí),這個(gè)倍頻器不起作用,定時(shí)器時(shí)鐘頻率等于APB2時(shí)鐘。當(dāng)APB2預(yù)分頻系數(shù)為其他時(shí)這個(gè)倍頻器起作用。定時(shí)器的輸入頻率等于APB2的2倍。本實(shí)驗(yàn)中,APB2時(shí)鐘被設(shè)置成了84M是對(duì)系統(tǒng)時(shí)鐘進(jìn)行2分頻。因此定時(shí)器的輸入時(shí)鐘是84M×2 = 168M = SYSCLK。(PS:這個(gè)倍頻我在ST的手冊(cè)上邊沒有找到,是網(wǎng)上搜索得到的結(jié)果,與實(shí)際結(jié)果對(duì)比是正確的) TIM_Prescaler 為預(yù)分頻值,為0時(shí)分頻系數(shù)為1. TIM_Period 為每個(gè)周期計(jì)數(shù)值,從0開始計(jì)數(shù)所以其值應(yīng)為計(jì)數(shù)次數(shù)減去1。 TIM_RepetitionCounter是F4新增的一個(gè)東西,只有高級(jí)定時(shí)器TIM1和TIM8有效,對(duì)應(yīng)寄存器RCR。意思就是每TIM_RepetitionCounter+1個(gè)技術(shù)周期產(chǎn)生一次中斷。 我定義的時(shí)基如下,將產(chǎn)生頻率為20K的即使基準(zhǔn): TimerPeriod = (SystemCoreClock / 20000 ) - 1; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); //時(shí)基初始化 TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死區(qū)控制用。 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //計(jì)數(shù)器方向 TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);
2、計(jì)時(shí)輸出 ccr1、2、3、4為各個(gè)技術(shù)周期的TIM_Pulse。即每當(dāng)計(jì)數(shù)到這些個(gè)值的時(shí)候,PWM波形就會(huì)反轉(zhuǎn)。 ccr1 = TimerPeriod / 2; //占空比1/2 = 50% ccr2 = TimerPeriod / 3; //占空比1/3 = 33% ccr3 = TimerPeriod / 4; //占空比1/4 = 25% ccr4 = TimerPeriod / 5; //占空比1/5 = 20%
定義輸出部分: TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_Pulse = ccr1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;//輸出同相,TIM_OCNPolarity_High時(shí)輸出反相 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC1Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr2; TIM_OC2Init(TIM1,&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = ccr3; TIM_OC3Init(TIM1,&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = ccr4; TIM_OC4Init(TIM1,&TIM_OCInitStructure); TIM_Cmd(TIM1,ENABLE); TIM_CtrlPWMOutputs(TIM1,ENABLE);
3、到這里就完成了定時(shí)器的配置,下邊是GPIO引腳的配置 使用GPIOE的8、9、10、11、12、13、14引腳進(jìn)行PWM輸出。配置如下: void TIM1_GPIO_Config(void) { //PE 8 9 10 11 12 13 14輸出 GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(GPIOE,&GPIO_InitStructure);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1); } 輸出波形圖: 同相輸出時(shí)候: OC1/OC1N OC2/OC2N OC3/OC3/N OC4 反相輸出 OC1/OC1N OC2/OC2N OC3/OC3/N OC4 完整的應(yīng)用代碼: 使用時(shí)只主要兩行即可 //主函數(shù)調(diào)用 TIM1_GPIO_Config(); Tim1_Config(); //定時(shí)器輸出引腳初始化 void TIM1_GPIO_Config(void) { //PE 8 9 10 11 12 13 14輸出 GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(GPIOE,&GPIO_InitStructure); GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1); } //TIM1做PWM輸出 void Tim1_Config(void) { TimerPeriod = (SystemCoreClock / 20000 ) - 1; ccr1 = TimerPeriod / 2; //占空比1/2 = 50% ccr2 = TimerPeriod / 3; //占空比1/3 = 33% ccr3 = TimerPeriod / 4; //占空比1/4 = 25% ccr4 = TimerPeriod / 5; //占空比1/5 = 20% RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); //時(shí)基初始化 TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死區(qū)控制用。 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //計(jì)數(shù)器方向 TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_Pulse = ccr1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC1Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr2; TIM_OC2Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr3; TIM_OC3Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr4; TIM_OC4Init(TIM1,&TIM_OCInitStructure); TIM_Cmd(TIM1,ENABLE); TIM_CtrlPWMOutputs(TIM1,ENABLE); }
|