一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

斯坦福大學Fall 2018課程-機器學習硬件加速器

 LibraryPKU 2018-07-15

【導讀】斯坦福大學2018秋季學期推出《機器學習硬件加速器》課程,介紹機器學習系統(tǒng)中的硬件加速器訓練和推理的架構技術,系統(tǒng)而又前沿,是該領域不可多得的課程值得一看。



課程簡介

本課程將深入介紹在機器學習系統(tǒng)中用于設計訓練和推理加速器的架構技術。本課程將涵蓋經典的ML算法,如線性回歸和支持向量機,以及DNN模型,如卷積神經網絡和遞歸神經網絡。我們將考慮對這些模型的訓練和推斷,并討論批量大小、精度、稀疏性和壓縮等參數(shù)對這些模型精度的影響。我們將介紹ML模型推理和訓練的加速器設計。學生將熟悉使用并行性、局部性和低精度來實現(xiàn)ML中使用的核心計算內核的硬件實現(xiàn)技術。為了設計高效節(jié)能的加速器,學生們將建立直覺,在ML模型參數(shù)和硬件實現(xiàn)技術之間進行權衡。學生將閱讀最近的研究論文并完成一個設計項目。

課程地址:

https://cs217./



教師介紹

Kunle Olukotun 教授:

http://arsenalfc./kunle

ARDAVAN PEDRAM

https://web./~perdavan/


課程內容安排






LectureTopicReadingSpatial Assignment
1

Introduction, role of hardware accelerators in post Dennard  and Moore era

(硬件加速器在后登納-摩爾時代作用介紹)

Is Dark silicon useful?
Hennessy Patterson Chapter 7.1-7.2

2Classical ML algorithms: Regression, SVMs (What is the

  building block?)

(經典ML算法:回歸,SVMs)

TABLA
3Linear algebra fundamentals and accelerating linear algebra
BLAS operations

20th century techniques: Systolic arrays and MIMDs, CGRAs

(線性代數(shù)基礎和BLAS加速運算)

Why Systolic Architectures?
Anatomy of high performance GEMM
Linear Algebra
Accelerators
4Evaluating Performance, Energy efficiency, Parallelism, Locality,

Memory hierarchy, Roofline model

(評價性能、能效、并行度、局部性、內存層次結構,Roofline 模型)

Dark Memory
5

Real-World Architectures: Putting it into practice Accelerating GEMM: Custom, GPU, TPU1 architectures and their GEMM performance

(現(xiàn)實世界的架構:將其付諸實踐加速GEMM:自定義、GPU、TPU1架構和它們的GEMM性能。)

Google TPU
Codesign Tradeoffs
NVIDIA Tesla V100

6

Neural networks:  MLPs and CNNs Inference

(神經網絡:MLP和CNN推斷)

Viviense IEEE proceeding
Brooks’s book (Selected Chapters)
CNN Inference
Accelerators
7Accelerating Inference for CNNs:

Blocking and Parallelism in practice DianNao, Eyeriss, TPU1

(加速對CNNs的推理:在實踐中阻塞和并行。 DianNao、Eyeriss TPU1)

Systematic Approach to Blocking
Eyeriss
Google TPU (see lecture 5)

8Modeling neural networks with Spatial, Analyzing 

performance and energy with Spatial

(以空間為基礎的神經網絡建模,分析性能和空間能量)

Spatial
One related work

9

Training: SGD, back propagation, statistical efficiency, batch size

(訓練:SGD, )反向傳播,

NIPS workshop last year
Graphcore
Training
Accelerators
10

Resilience of DNNs: Sparsity and Low Precision Networks

(DNNs的彈性能力:稀疏性和低精度網絡)


Some theory paper
EIE
Flexpoint of Nervana
Boris Ginsburg: paper, presentation
LSTM Block Compression by Baidu?

11

Low precision training

(低精度訓練)


HALP
Ternary or binary networks
See Boris Ginsburg's work (lecture 10)

12Training in Distributed and Parallel systems: 

Hogwild!, asynchrony and hardware efficiency

(分布式并行系統(tǒng)訓練)

Deep Gradient compression
Hogwild!
Large Scale Distributed Deep Networks
Obstinate cache?

13

FPGAs and CGRAs: Catapult, Brainwave, Plasticine

(FPGA)

Catapult
Brainwave
Plasticine

14

ML benchmarks: DAWNbench, MLPerf

(機器學習基準)

DawnBench
Some other benchmark paper

15

Project presentations




客座講師

課程相關內容Slides

  • Lecture01: Deep Learning Challenge. Is There Theory? (Donoho/Monajemi/Papyan)

    https://cs217./assets/lectures/StanfordStats385-20170927-Lecture01-Donoho.pdf

  • Lecture02: Overview of Deep Learning From a Practical Point of View (Donoho/Monajemi/Papyan)

    https://cs217./assets/lectures/Lecture-02-AsCorrected.pdf

  • Lecture03: Harmonic Analysis of Deep Convolutional Neural Networks (Helmut Bolcskei)

    https://cs217./assets/lectures/bolcskei-stats385-slides.pdf

  • Lecture04: Convnets from First Principles: Generative Models, Dynamic Programming & EM (Ankit Patel)

    https://cs217./assets/lectures/2017%20Stanford%20Guest%20Lecture%20-%20Stats%20385%20-%20Oct%202017.pdf

  • Lecture05: When Can Deep Networks Avoid the Curse of Dimensionality and Other Theoretical Puzzles (Tomaso Poggio)

    https://cs217./assets/lectures/StanfordStats385-20171025-Lecture05-Poggio.pdf

  • Lecture06: Views of Deep Networksfrom Reproducing Kernel Hilbert Spaces (Zaid Harchaoui)

    https://cs217./assets/lectures/lecture6_stats385_stanford_nov17.pdf

  • Lecture07: Understanding and Improving Deep Learning With Random Matrix Theory (Jeffrey Pennington)

    https://cs217./assets/lectures/Understanding_and_improving_deep_learing_with_random_matrix_theory.pdf

  • Lecture08: Topology and Geometry of Half-Rectified Network Optimization (Joan Bruna)

    https://cs217./assets/lectures/stanford_nov15.pdf

  • Lecture09: What’s Missing from Deep Learning? (Bruno Olshausen)

    https://cs217./assets/lectures/lecture-09--20171129.pdf

  • Lecture10: Convolutional Neural Networks in View of Sparse Coding (Vardan Papyan)

    https://cs217./assets/lectures/lecture-10--20171206.pdf


附:第一節(jié) 深度學習挑戰(zhàn):存在理論么











    本站是提供個人知識管理的網絡存儲空間,所有內容均由用戶發(fā)布,不代表本站觀點。請注意甄別內容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權內容,請點擊一鍵舉報。
    轉藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多

    亚洲性生活一区二区三区| 九九九热在线免费视频| 国产精品午夜视频免费观看| 精品国产av一区二区三区不卡蜜| 欧美精品亚洲精品日韩专区| 欧洲一区二区三区自拍天堂| 成人精品日韩专区在线观看| 国产免费自拍黄片免费看| 日韩色婷婷综合在线观看| 欧美午夜一级特黄大片| 午夜成年人黄片免费观看| 99秋霞在线观看视频| 亚洲在线观看福利视频| 东京热男人的天堂一二三区| 91在线国内在线中文字幕| 少妇肥臀一区二区三区| 午夜国产福利在线播放| 丰满人妻熟妇乱又乱精品古代| 国产乱人伦精品一区二区三区四区| 九九热精品视频在线观看| 国产精品福利一二三区| 国产一区二区三区午夜精品| 91精品国产品国语在线不卡 | 内射精子视频欧美一区二区| 欧美在线观看视频三区| 好吊一区二区三区在线看| 亚洲午夜av久久久精品| 亚洲最新av在线观看| 在线免费观看黄色美女| 亚洲av成人一区二区三区在线| 男人和女人干逼的视频| 国产精品香蕉一级免费| 亚洲视频一区自拍偷拍另类| 日韩日韩日韩日韩在线| 一区二区欧美另类稀缺| 91精品日本在线视频| 性感少妇无套内射在线视频| 日韩精品一区二区一牛| 黄片免费播放一区二区| 国产精品一区欧美二区| 中文字幕久热精品视频在线|