如圖,拋物線y=ax2 bx﹣4與x軸交于點(diǎn)A(2,0)和點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對(duì)稱軸為直線x=﹣1,點(diǎn)E為線段AC的中點(diǎn),點(diǎn)F為x軸上一動(dòng)點(diǎn). (1)直接寫出點(diǎn)B的坐標(biāo),并求出拋物線的函數(shù)關(guān)系式; (2)當(dāng)點(diǎn)F的橫坐標(biāo)為﹣3時(shí),線段EF上存在點(diǎn)H,使△CDH的周長(zhǎng)最小,請(qǐng)求出點(diǎn)H,使△CDH的周長(zhǎng)最小,請(qǐng)求出點(diǎn)H的坐標(biāo); (3)在y軸左側(cè)的拋物線上是否存在點(diǎn)P,使以P,F(xiàn),C,D為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由. 考點(diǎn)分析: 二次函數(shù)綜合題. 題干分析: (1)根據(jù)軸對(duì)稱,可得B點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法,可得答案; (2)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得C點(diǎn)坐標(biāo),根據(jù)配方法,可得D點(diǎn)坐標(biāo),根據(jù)勾股定理,可得CF的長(zhǎng),根據(jù)等腰三角形的性質(zhì),可得A,C關(guān)于EF對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),可得PA=PC,根據(jù)兩點(diǎn)之間線段最短,可得P是AD與EF的交點(diǎn),根據(jù)解方程組,可得答案; (3)根據(jù)平行四邊形的對(duì)角線互相平分,可得P點(diǎn)的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案. |
|