18年中考數(shù)學(xué)都考哪些知識(shí)點(diǎn)?數(shù)姐整理了一份知識(shí)點(diǎn)清單,把幾何篇常考的知識(shí)點(diǎn)送給大家,中考生加油! 初中數(shù)學(xué)幾何公式大全——初中幾何公式包括:線、角、圓、正方形、矩形等數(shù)學(xué)學(xué)幾何的公式,以供同學(xué)們學(xué)習(xí)和理解! 初中幾何公式:線 1.同角或等角的余角相等 2.過一點(diǎn)有且只有一條直線和已知直線垂直 3.過兩點(diǎn)有且只有一條直線 4.兩點(diǎn)之間線段最短 5.同角或等角的補(bǔ)角相等 6.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7.平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行 8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行 初中幾何公式:角 9.同位角相等,兩直線平行 10.內(nèi)錯(cuò)角相等,兩直線平行 11.同旁內(nèi)角互補(bǔ),兩直線平行 12.兩直線平行,同位角相等 13.兩直線平行,內(nèi)錯(cuò)角相等 14.兩直線平行,同旁內(nèi)角互補(bǔ) 初中幾何公式:三角形 15.定理 三角形兩邊的和大于第三邊 16.推論 三角形兩邊的差小于第三邊 17.三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18.推論1 直角三角形的兩個(gè)銳角互余 19.推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20.推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22.邊角邊公理 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23.角邊角公理 有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24.推論 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25.邊邊邊公理 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26.斜邊、直角邊公理 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27.定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28.定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29.角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 初中幾何公式:等腰三角形 30.等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 31.推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32.等腰三角形的頂角平分線、底邊上的中線和高互相重合 33.推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34.等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這 兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35.推論1 三個(gè)角都相等的三角形是等邊三角形 36.推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37.在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊 等于斜邊的一半 38.直角三角形斜邊上的中線等于斜邊上的一半 39.定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40.逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直 平分線上 41.線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集 合 42.定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43.定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連 線的垂直平分線 44.定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長 線相交,那么交點(diǎn)在對(duì)稱軸上 45.逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那 么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46.勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平 方,即a+b=c 47.勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系 a+b=c,那么這個(gè)三角形是直角三角形 初中幾何公式:四邊形 48.定理 四邊形的內(nèi)角和等于360° 49.四邊形的外角和等于360° 50.多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180° 51.推論 任意多邊的外角和等于360° 52.平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53.平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54.推論 夾在兩條平行線間的平行線段相等 55.平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56.平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊 形 57.平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊 形 58.平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59.平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 初中幾何公式:矩形 60.矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61.矩形性質(zhì)定理2 矩形的對(duì)角線相等 62.矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63.矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 初中幾何公式:菱形 64.菱形性質(zhì)定理1 菱形的四條邊都相等 65.菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平 分一組對(duì)角 66.菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67.菱形判定定理1 四邊都相等的四邊形是菱形 68.菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 初中幾何公式:正方形 69.正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70.正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平 分,每條對(duì)角線平分一組對(duì)角 71.定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72.定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中 心,并且被對(duì)稱中心平分 73.逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 初中幾何公式:等腰梯形 74.等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75.等腰梯形的兩條對(duì)角線相等 76.等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77.對(duì)角線相等的梯形是等腰梯形 初中幾何公式:等分 78.平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79.推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80.推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊 81.三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82.梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84.(2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85.(3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86.平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng) 線段成比例 87.推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長 線),所得的對(duì)應(yīng)線段成比例 88.定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對(duì) 應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89.平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的 三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90.定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相 交,所構(gòu)成的三角形與原三角形相似 91.相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92.直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相 似 93.判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS) 94.判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95.定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三 角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相 似 96.性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平 分線的比都等于相似比 97.性質(zhì)定理2 相似三角形周長的比等于相似比 98.性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99.任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值 等于它的余角的正弦值 100.任意銳角的正切值等于它的余角的余切值,任意銳角的余切 值等于它的余角的正切值 初中幾何公式:圓 101.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合 102.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104.同圓或等圓的半徑相等 105.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長 為半徑的圓 106.和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的 垂直平分線 107.到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108.到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行 且距離相等的一條直線 109.定理 不在同一直線上的三個(gè)點(diǎn)確定一條直線 110.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條 弧 111.推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì) 的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧 ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的 另一條弧 112.推論2 圓的兩條平行弦所夾的弧相等 113.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的 弦相等,所對(duì)的弦的弦心距相等 115.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或 兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相 等 116.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的 圓周角所對(duì)的弧也相等 118.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的 弦是直徑 119.推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè) 三角形是直角三角形 120.定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角 121.①直線L和⊙O相交 d﹤r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d﹥r(jià) 122.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線 是圓的切線 123.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑 124.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 125.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心 126.切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相 等,圓心和這一點(diǎn)的連線平分兩條切線的夾角 127.圓的外切四邊形的兩組對(duì)邊的和相等 128.弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129.推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相 等 130.相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的 積相等 131.推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成 的兩條線段的比例中項(xiàng) 132.切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到 割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng) 133.推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的 交點(diǎn)的兩條線段長的積相等 134.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135.①兩圓外離 d﹥R+r ②兩圓外切 d=R+r ③兩圓相交 R-r﹤d﹤R+r(R﹥r(jià)) ④兩圓內(nèi)切 d=R-r(R﹥r(jià)) ⑤兩圓內(nèi)含d﹤R-r(R﹥r(jià)) 136.定理 相交兩圓的連心線垂直平分兩圓的公共弦 137.定理 把圓分成n(n≥3): ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓 是同心圓 139.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n 140.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 142.正三角形面積√3a/4 a表示邊長 143.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng) 為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144.弧長計(jì)算公式:L=nπR/180 145.扇形面積公式:S扇形=nπR/360=LR/2 146.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r) |
|