一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

Deep learning – Convolutional neural networks and feature extraction with Python | Terra Incognita

 暖寶寶j 2017-08-30

Convolutional neural networks (or ConvNets) are biologically-inspired variants of MLPs, they have different kinds of layers and each different layer works different than the usual MLP layers. If you are interested in learning more about ConvNets, a good course is the CS231n – Convolutional Neural Newtorks for Visual Recognition. The architecture of the CNNs are shown in the images below:

A regular neural network.
A regular neural network (from CS231n website).
A ConvNet network achitecture (from CS231n website).
A ConvNet network achitecture (from CS231n website).

As you can see, the ConvNets works with 3D volumes and transformations of these 3D volumes. I won’t repeat in this post the entire CS231n tutorial, so if you’re really interested, please take time to read before continuing.

Lasagne and nolearn

One of the Python packages for deep learning that I really like to work with is Lasagne and nolearn. Lasagne is based on Theano so the GPU speedups will really make a great difference, and their declarative approach for the neural networks creation are really helpful. The nolearn libary is a collection of utilities around neural networks packages (including Lasagne) that can help us a lot during the creation of the neural network architecture, inspection of the layers, etc.

What I’m going to show in this post, is how to build a simple ConvNet architecture with some convolutional and pooling layers. I’m also going to show how you can use a ConvNet to train a feature extractor and then use it to extract features before feeding them into different models like SVM, Logistic Regression, etc. Many people use pre-trained ConvNet models and then remove the last output layer to extract the features from ConvNets that were trained on ImageNet datasets. This is usually called transfer learning because you can use layers from other ConvNets as feature extractors for different problems, since the first layer filters of the ConvNets works as edge detectors, they can be used as general feature detectors for other problems.

Loading the MNIST dataset

The MNIST dataset is one of the most traditional datasets for digits classification. We will use a pickled version of it for Python, but first, lets import the packages that we will need to use:

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm

from urllib import urlretrieve
import cPickle as pickle
import os
import gzip

import numpy as np
import theano

import lasagne
from lasagne import layers
from lasagne.updates import nesterov_momentum

from nolearn.lasagne import NeuralNet
from nolearn.lasagne import visualize

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

As you can see, we are importing matplotlib for plotting some images, some native Python modules to download the MNIST dataset, numpy, theano, lasagne, nolearn and some scikit-learn functions for model evaluation.

After that, we define our MNIST loading function (this is pretty the same function used in the Lasagne tutorial):

def load_dataset():
    url = 'http:///data/mnist/mnist.pkl.gz'
    filename = 'mnist.pkl.gz'
    if not os.path.exists(filename):
        print("Downloading MNIST dataset...")
        urlretrieve(url, filename)

    with gzip.open(filename, 'rb') as f:
        data = pickle.load(f)

    X_train, y_train = data[0]
    X_val, y_val = data[1]
    X_test, y_test = data[2]

    X_train = X_train.reshape((-1, 1, 28, 28))
    X_val = X_val.reshape((-1, 1, 28, 28))
    X_test = X_test.reshape((-1, 1, 28, 28))

    y_train = y_train.astype(np.uint8)
    y_val = y_val.astype(np.uint8)
    y_test = y_test.astype(np.uint8)

    return X_train, y_train, X_val, y_val, X_test, y_test

As you can see, we are downloading the MNIST pickled dataset and then unpacking it into the three different datasets: train, validation and test. After that we reshape the image contents to prepare them to input into the Lasagne input layer later and we also convert the numpy array types to uint8 due to the GPU/theano datatype restrictions.

After that, we’re ready to load the MNIST dataset and inspect it:

X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()
plt.imshow(X_train[0][0], cmap=cm.binary)

This code above will output the following image (I’m using IPython Notebook):

An example of a MNIST digit (5 in the case).
An example of a MNIST digit (5 in the case).

ConvNet Architecture and Training

Now we can define our ConvNet architecture and then train it using a GPU/CPU (I have a very cheap GPU, but it helps a lot):

net1 = NeuralNet(
    layers=[('input', layers.InputLayer),
            ('conv2d1', layers.Conv2DLayer),
            ('maxpool1', layers.MaxPool2DLayer),
            ('conv2d2', layers.Conv2DLayer),
            ('maxpool2', layers.MaxPool2DLayer),
            ('dropout1', layers.DropoutLayer),
            ('dense', layers.DenseLayer),
            ('dropout2', layers.DropoutLayer),
            ('output', layers.DenseLayer),
            ],
    # input layer
    input_shape=(None, 1, 28, 28),
    # layer conv2d1
    conv2d1_num_filters=32,
    conv2d1_filter_size=(5, 5),
    conv2d1_nonlinearity=lasagne.nonlinearities.rectify,
    conv2d1_W=lasagne.init.GlorotUniform(),  
    # layer maxpool1
    maxpool1_pool_size=(2, 2),    
    # layer conv2d2
    conv2d2_num_filters=32,
    conv2d2_filter_size=(5, 5),
    conv2d2_nonlinearity=lasagne.nonlinearities.rectify,
    # layer maxpool2
    maxpool2_pool_size=(2, 2),
    # dropout1
    dropout1_p=0.5,    
    # dense
    dense_num_units=256,
    dense_nonlinearity=lasagne.nonlinearities.rectify,    
    # dropout2
    dropout2_p=0.5,    
    # output
    output_nonlinearity=lasagne.nonlinearities.softmax,
    output_num_units=10,
    # optimization method params
    update=nesterov_momentum,
    update_learning_rate=0.01,
    update_momentum=0.9,
    max_epochs=10,
    verbose=1,
    )

# Train the network
nn = net1.fit(X_train, y_train)

As you can see, in the parameter layers we’re defining a dictionary of tuples with the layer names/types and then we define the parameters for these layers. Our architecture here is using two convolutional layers with poolings and then a fully connected layer (dense layer) and the output layer. There are also dropouts between some layers, the dropout layer is a regularizer that randomly sets input values to zero to avoid overfitting (see the image below).

Dropout layer effect (from CS231n website).
Dropout layer effect (from CS231n website).

After calling the train method, the nolearn package will show status of the learning process, in my machine with my humble GPU I got the results below:

# Neural Network with 160362 learnable parameters

## Layer information

  #  name      size
---  --------  --------
  0  input     1x28x28
  1  conv2d1   32x24x24
  2  maxpool1  32x12x12
  3  conv2d2   32x8x8
  4  maxpool2  32x4x4
  5  dropout1  32x4x4
  6  dense     256
  7  dropout2  256
  8  output    10

epoch   train loss    valid loss    train/val    valid acc  dur
------- ------------  ------------  -----------  ---------  ---
      1     0.85204   0.16707      5.09977      0.95174  33.71s
      2     0.27571   0.10732      2.56896      0.96825  33.34s
      3     0.20262   0.08567      2.36524      0.97488  33.51s
      4     0.16551   0.07695      2.15081      0.97705  33.50s
      5     0.14173   0.06803      2.08322      0.98061  34.38s
      6     0.12519   0.06067      2.06352      0.98239  34.02s
      7     0.11077   0.05532      2.00254      0.98427  33.78s
      8     0.10497   0.05771      1.81898      0.98248  34.17s
      9     0.09881   0.05159      1.91509      0.98407  33.80s
     10     0.09264   0.04958      1.86864      0.98526  33.40s

As you can see, the accuracy in the end was 0.98526, a pretty good performance for a 10 epochs training.

Prediction and Confusion Matrix

Now we can use the model to predict the entire testing dataset:

preds = net1.predict(X_test)

And we can also plot a confusion matrix to check the performance of the neural network classification:

cm = confusion_matrix(y_test, preds)
plt.matshow(cm)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()

The code above will plot the following confusion matrix:

Confusion Matrix
Confusion Matrix

As you can see, the diagonal is where the classification is more dense, showing the good performance of our classifier.

Filters Visualization

We can also visualize the 32 filters from the first convolutional layer:

visualize.plot_conv_weights(net1.layers_['conv2d1'])

The code above will plot the following filters below:

The first layer 5x5x32 filters.
The first layer 5x5x32 filters.

As you can see, the nolearn plot_conv_weights plots all the filters present in the layer we specified.

Theano layer functions and Feature Extraction

Now it is time to create theano-compiled functions that will feed-forward the input data into the architecture up to the layer you’re interested. I’m going to get the functions for the output layer and also for the dense layer before the output layer:

dense_layer = layers.get_output(net1.layers_['dense'], deterministic=True)
output_layer = layers.get_output(net1.layers_['output'], deterministic=True)
input_var = net1.layers_['input'].input_var

f_output = theano.function([input_var], output_layer)
f_dense = theano.function([input_var], dense_layer)

As you can see, we have now two theano functions called f_output and f_dense (for the output and dense layers). Please note that in order to get the layers here we are using a extra parameter called “deterministic“, this is to avoid the dropout layers affecting our feed-forward pass.

We can now convert an example instance to the input format and then feed it into the theano function for the output layer:

instance = X_test[0][None, :, :]
%timeit -n 500 f_output(instance)

500 loops, best of 3: 858 μs per loop

As you can see, the f_output function takes an average of 858 μs. We can also plot the output layer activations for the instance:

pred = f_output(instance)
N = pred.shape[1]
plt.bar(range(N), pred.ravel())

The code above will create the following plot:

Output layer activations.
Output layer activations.

As you can see, the digit was recognized as the digit 7. The fact that you can create theano functions for any layer of the network is very useful because you can create a function (like we did before) to get the activations for the dense layer (the one before the output layer) and you can use these activations as features and use your neural network not as classifier but as a feature extractor. Let’s plot now the 256 unit activations for the dense layer:

pred = f_dense(instance)
N = pred.shape[1]
plt.bar(range(N), pred.ravel())

The code above will create the following plot below:

Dense layer activations.
Dense layer activations.

You can now use the output of the these 256 activations as features on a linear classifier like Logistic Regression or SVM.

I hope you enjoyed the tutorial !

    本站是提供個人知識管理的網(wǎng)絡存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權內(nèi)容,請點擊一鍵舉報。
    轉藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多

    日本高清视频在线观看不卡 | 久久综合狠狠综合久久综合| 日韩成人h视频在线观看| 丰满人妻一二区二区三区av| 色婷婷在线视频免费播放| 国产精品午夜视频免费观看 | 午夜福利92在线观看| 久久精品a毛片看国产成人| 欧美人禽色视频免费看| 中文字幕人妻综合一区二区| 欧美日韩国产福利在线观看| 国产不卡在线免费观看视频| 日韩成人中文字幕在线一区| 国产又大又黄又粗的黄色| 国产中文字幕一区二区| 精品精品国产自在久久高清| 久久碰国产一区二区三区| 国产综合一区二区三区av | 亚洲黄片在线免费小视频| 美女极度色诱视频在线观看| 色偷偷偷拍视频在线观看| 欧美成人一区二区三区在线| 日本加勒比中文在线观看| 五月激情综合在线视频| 草草夜色精品国产噜噜竹菊| 激情综合网俺也狠狠地| 欧洲日韩精品一区二区三区| 美国女大兵激情豪放视频播放| 日本女优一色一伦一区二区三区 | 国产日产欧美精品视频| 91福利视频日本免费看看| 大屁股肥臀熟女一区二区视频| 午夜精品国产精品久久久| 亚洲中文字幕有码在线观看| 天堂av一区一区一区| 国产一区二区三区四区中文| 丝袜诱惑一区二区三区| 欧美亚洲综合另类色妞| 97人妻人人揉人人躁人人| 国产一区国产二区在线视频| 亚洲国产丝袜一区二区三区四 |