#coding=utf-8
import cv2
import cv2.cv as cv
img = cv2.imread("5.jpg")
def detect(img, cascade):
'''detectMultiScale函數(shù)中smallImg表示的是要檢測的輸入圖像為smallImg,
faces表示檢測到的人臉目標序列,1.3表示每次圖像尺寸減小的比例為1.3,
4表示每一個目標至少要被檢測到3次才算是真的目標(因為周圍的像素和不同的窗口大小都可以檢測到人臉),
CV_HAAR_SCALE_IMAGE表示不是縮放分類器來檢測,而是縮放圖像,Size(20, 20)為目標的最小最大尺寸'''
rects = cascade.detectMultiScale(img, scaleFactor=1.3,
minNeighbors=5, minSize=(30, 30), flags = cv.CV_HAAR_SCALE_IMAGE)
if len(rects) == 0:
return []
print rects
rects[:,2:] += rects[:,:2]
print rects
return rects
#在img上繪制矩形
def draw_rects(img, rects, color):
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
#轉(zhuǎn)換為灰度圖
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#直方圖均衡處理
gray = cv2.equalizeHist(gray)
#臉部特征分類地址,里面還有其他
cascade_fn = '/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml'
#讀取分類器,CascadeClassifier下面有一個detectMultiScale方法來得到矩形
cascade = cv2.CascadeClassifier(cascade_fn)
#通過分類器得到rects
rects = detect(gray, cascade)
#vis為img副本
'''
以下文件操作部分可以刪除,功能只是要讀取上一次的人臉位置重心
'''
vis = img.copy()
txt = str(rects)
fileHandle = open ( 'weizhi.txt', 'r' )
begin = fileHandle.read()
fileHandle.close()
fileHandle = open ( 'weizhi.txt', 'w' )
fileHandle.write(txt)
fileHandle.close()
x =int(begin[2:5:])
y =int(begin[6:9:])
z =int(begin[10:13])/2
x = x + z
y = y + z
print("x=",x,"y=",y,"z=",z)
f = open('zhongxin.txt','w')
f.write(str(x)+" "+str(y)+" "+str(z))
f.close()
#畫矩形
draw_rects(vis, rects, (0, 255, 0))
cv2.imshow('facedetect', vis)
cv2.waitKey(0)
cv2.destroyAllWindows()