隨著對無所不在的通信需求和高數(shù)據(jù)率通信業(yè)務(wù)的不斷增長,衛(wèi)星通信所具有的無縫覆蓋和通信容量大的優(yōu)勢將在新一代通信系統(tǒng)中發(fā)揮關(guān)鍵性的作用,衛(wèi)星通信技術(shù)和信息通信產(chǎn)業(yè)也正在發(fā)生巨大的變革。對近年來衛(wèi)星通信新技術(shù)和發(fā)展熱點(diǎn)作了全面的綜述,總結(jié)了多波束天線、星上處理的發(fā)展?fàn)顩r和衛(wèi)星頻譜資源的使用情況,概述了星地融合通信和衛(wèi)星寬帶通信并分析了發(fā)展中面臨的挑戰(zhàn),展望了衛(wèi)星通信的發(fā)展前景。 中文引用格式: 郝才勇,駱超,劉恒. 衛(wèi)星通信近期發(fā)展綜述[J].電子技術(shù)應(yīng)用,2016,42(8):11-15,20 0 引言 從1964年在美國成立了國際通信衛(wèi)星組織INTELSAT,并于次年發(fā)射了第一顆商用通信衛(wèi)星(“Early Bird”)以來,衛(wèi)星通信技術(shù)及其應(yīng)用蓬勃發(fā)展,取得了巨大的成功。除了在軍事領(lǐng)域中發(fā)揮著關(guān)鍵性的作用以外,衛(wèi)星通信已經(jīng)成為了人們生活中不可或缺的一部分:為人們提供豐富多彩的電視廣播和語音廣播,為地面蜂窩網(wǎng)絡(luò)尚未部署的偏遠(yuǎn)地區(qū)、海上和空中提供必要的通信,為發(fā)生自然災(zāi)害的區(qū)域提供寶貴的應(yīng)急通信,為欠發(fā)達(dá)或人口密度低的地區(qū)提供互聯(lián)網(wǎng)接入等[1]。 衛(wèi)星通信與地面通信方式相比主要具有以下特點(diǎn)[2-4]:(1)覆蓋范圍廣:地球靜止軌道(GEO)衛(wèi)星距離地面35 786 km,只需要三顆GEO衛(wèi)星就能覆蓋全球除兩極以外的所有區(qū)域;(2)通信系統(tǒng)容量大:衛(wèi)星頻率資源相當(dāng)豐富,能提供寬帶通信服務(wù),并可方便地向更高頻段擴(kuò)展;(3)快速向市場提供服務(wù):建立地面通信設(shè)施迅速,開展新的業(yè)務(wù)和應(yīng)用周期短;(4)靈活性高:衛(wèi)星通信系統(tǒng)的建立不受地理?xiàng)l件限制,無論是大城市還是偏遠(yuǎn)山區(qū)或是海島都可建立通信,且通信距離與成本無關(guān);(5)災(zāi)難容忍性強(qiáng):在自然災(zāi)害如地震、臺風(fēng)發(fā)生時仍能提供穩(wěn)定的通信;(6)通信鏈路傳輸時延大:信號在GEO衛(wèi)星與地面之間往返傳輸?shù)臅r間約為0.25 s,對時間敏感度高的應(yīng)用如語音通話會受到通信延遲的影響;(7)通信鏈路傳輸衰減大:通信鏈路傳輸距離很遠(yuǎn),造成了信號衰減較大,且高頻段(如Ku/Ka頻段)易受雨衰、雪衰等不利天氣影響;(8)信號視距傳播:采用高頻段信號通信,傳輸易受障礙物影響。 然而,長期以來衛(wèi)星通信一直作為地面固定、無線或移動通信系統(tǒng)的一種補(bǔ)充通信方式[5]。例如,早期的衛(wèi)星通信只是用在海運(yùn)領(lǐng)域,這是由于地面通信網(wǎng)絡(luò)受限于覆蓋范圍和技術(shù),無法在海上提供服務(wù)。衛(wèi)星通信系統(tǒng)要想在與地面通信系統(tǒng)的競爭中發(fā)揮出更重要的作用,還需要克服自身通信特性上的一些不足。例如:對于網(wǎng)絡(luò)層存在的傳輸時延長、丟包率高及鏈路干擾等問題,需要采用新的算法和協(xié)議對網(wǎng)絡(luò)層進(jìn)行優(yōu)化,從而使衛(wèi)星通信適合于個人移動通信和寬帶互聯(lián)網(wǎng)接入;在物理層,由于衛(wèi)星通信的視距傳輸特性,限制了部分區(qū)域特別是繁華市區(qū)的用戶接入衛(wèi)星網(wǎng)絡(luò),需要采用新的通信網(wǎng)絡(luò)架構(gòu)來推進(jìn)衛(wèi)星通信網(wǎng)絡(luò)和地面通信網(wǎng)絡(luò)的融合[6-8]。同時,信息通信技術(shù)的發(fā)展也促使我們從未來互聯(lián)網(wǎng)發(fā)展的角度來重新定義衛(wèi)星通信的作用。正如文獻(xiàn)[9]指出,未來互聯(lián)網(wǎng)一定是全球“任何地方、任何時間”都無處不在,必須能為社會在緊急情況下提供必要的幫助,而且必須是穩(wěn)定可靠的。地面蜂窩網(wǎng)絡(luò)受限于自身的局域覆蓋屬性,不能有效的滿足這些需求。因此,未來互聯(lián)網(wǎng)需要構(gòu)建和融合兩個基本通信網(wǎng)絡(luò):由地面蜂窩網(wǎng)絡(luò)組成的局域網(wǎng)部分和由衛(wèi)星網(wǎng)絡(luò)組成的全局網(wǎng)部分。在這種新的通信架構(gòu)下,衛(wèi)星通信將充分發(fā)揮其全球通信無縫覆蓋的優(yōu)勢而發(fā)展成為主導(dǎo)地位,不僅僅只是地面移動通信的輔助方式。 近期,衛(wèi)星通信新技術(shù)的迅速發(fā)展和通信商業(yè)市場需求的不斷增長,極大地促進(jìn)了衛(wèi)星通信業(yè)務(wù)和通信模式的創(chuàng)新發(fā)展,使當(dāng)前成為衛(wèi)星通信歷史上最活躍的時期之一。本文總結(jié)了衛(wèi)星通信近期發(fā)展的幾種新技術(shù),介紹了當(dāng)前衛(wèi)星通信的頻譜資源使用情況,綜述了星地融合通信和衛(wèi)星寬帶通信,并展望了衛(wèi)星通信的發(fā)展趨勢。 1 衛(wèi)星通信新技術(shù) 1.1 多波束天線 天線技術(shù)是衛(wèi)星通信的關(guān)鍵技術(shù)之一,由于衛(wèi)星通信鏈路傳輸距離很遠(yuǎn)造成了信號衰減很大,例如,GEO衛(wèi)星的C頻段信號(3.4 GHz-4.2 GHz)的鏈路衰減通常在200 dB左右。為保證穩(wěn)定可靠的通信,需要地面站采用高增益天線和高靈敏度接收機(jī),因此天線的尺寸和成本成為限制衛(wèi)星通信發(fā)展的嚴(yán)重障礙[10]。早期采用甚小孔徑終端(VSAT,Very Small Aperture Terminal)技術(shù)來緩解這一問題,天線系統(tǒng)由一個大型中心站與大量的小口徑天線終端站共同構(gòu)成一個星型網(wǎng),利用中心站天線G/T值(天線增益對噪聲溫度比)高的優(yōu)勢來彌補(bǔ)小站天線因天線口徑小、增益低導(dǎo)致鏈路余量不足的弱點(diǎn)[11]。然而,VSAT天線系統(tǒng)的靈活性不足,并且無法利用頻率復(fù)用技術(shù)來提高頻譜效率,衛(wèi)星通信天線的發(fā)展已經(jīng)轉(zhuǎn)向了多波束天線。 多波束天線(Multiple Beam Antenna)從2000年開始迅速發(fā)展,由于它能夠?qū)崿F(xiàn)高增益的點(diǎn)波束覆蓋,又能在廣域覆蓋范圍中實(shí)現(xiàn)頻率復(fù)用,從而在衛(wèi)星通信天線系統(tǒng)中得到廣泛應(yīng)用。多波束天線與數(shù)字波束成形不同,它使用大量的點(diǎn)波束實(shí)現(xiàn)廣域范圍覆蓋,可用帶寬被分為很多個子波段,從而在大量空間獨(dú)立的點(diǎn)波束之間可以實(shí)現(xiàn)每個子波段的復(fù)用,這與地面蜂窩通信網(wǎng)絡(luò)相似,顯著地增加了頻譜利用率和衛(wèi)星通信容量[12-13]。在衛(wèi)星通信系統(tǒng)中使用多波束天線的主要問題是相鄰波束之間的干擾[14],文獻(xiàn)[15-16]提出了幾種使用多波束天線的衛(wèi)星系統(tǒng)中使用頻譜分配技術(shù)來降低干擾的影響。 多波束天線技術(shù)提高了轉(zhuǎn)發(fā)器的功率使用效率和頻譜資源利用率,是發(fā)展大容量衛(wèi)星通信系統(tǒng)和增強(qiáng)衛(wèi)星通信市場競爭力的關(guān)鍵技術(shù)。目前,多波束天線已經(jīng)廣泛應(yīng)用在移動衛(wèi)星通信業(yè)務(wù)(Inmarsat,Thuraya,ACeS,Iridium等),區(qū)域性直播星(DTV-4S,DTV-7S,Echostar-10,Echostar-14等),個人通信衛(wèi)星(ViaSat-1,Jupiter-1,Anik-F等)和軍事通信衛(wèi)星(WGS,MUOS等)[17]。 1.2 星上處理 傳統(tǒng)的通信衛(wèi)星特別是GEO衛(wèi)星采用的是簡單的彎管式轉(zhuǎn)發(fā)器。近年來,用戶對高數(shù)據(jù)率傳輸和無縫覆蓋的交互式多媒體服務(wù)的需求快速增長,促進(jìn)了寬帶通信衛(wèi)星的迅速發(fā)展,使得采用先進(jìn)的星上處理(OBP- Onboard Processing)、星上交換技術(shù)與現(xiàn)有的綜合業(yè)務(wù)數(shù)據(jù)網(wǎng)(ISDN)和因特網(wǎng)的融合變得非常有必要[18-19],這極大地推動了OBP技術(shù)的發(fā)展。 OBP可分為再生式和非再生式兩種處理方式。再生式OBP是衛(wèi)星對接收的信號先在基帶解調(diào)解碼得到所傳輸?shù)臄?shù)據(jù)流,然后對數(shù)據(jù)流進(jìn)行交換和重新合路,再重新將信號編碼調(diào)制為新的數(shù)字調(diào)制信號;非再生式OBP是衛(wèi)星對接收到的信號不進(jìn)行解調(diào)解碼而直接做相應(yīng)的信號處理。 OBP最重要的作用在于支持星上交換,再生式OBP可在星上獲得各路信號所傳輸?shù)臄?shù)據(jù)流,從而能支持任何方式的交換,如ATM交換、IP交換或電路交換等。如果在星上實(shí)現(xiàn)了IP交換,則衛(wèi)星網(wǎng)絡(luò)與地面互聯(lián)網(wǎng)的融合將變得非常簡單和方便[10],因而興起了星上IP交換研究與應(yīng)用的熱潮,許多原計(jì)劃采用ATM交換的衛(wèi)星通信系統(tǒng)都改用了IP交換,例如Spaceway、Astrolink、SkyBridge等[3]。 同時,OBP技術(shù)的使用增強(qiáng)了點(diǎn)波束天線的信號功率和方向性,從而減小了用戶終端的尺寸和靈敏度要求,使得用戶能夠使用小型且廉價的終端進(jìn)行通信,并可實(shí)現(xiàn)高數(shù)據(jù)率業(yè)務(wù)(如多媒體視頻)。此外,由于OBP技術(shù)降低了衛(wèi)星通信系統(tǒng)對發(fā)射功率的要求,這將減小衛(wèi)星轉(zhuǎn)發(fā)器非線性特性造成的不利影響并降低相鄰信道干擾[20]。 2 衛(wèi)星頻譜資源 現(xiàn)階段衛(wèi)星通信發(fā)展的主要限制因素是頻譜資源無法滿足日益增長的新業(yè)務(wù)需求,造成了頻譜擁塞和衛(wèi)星干擾越來越嚴(yán)重的問題。同時,衛(wèi)星通信系統(tǒng)與地面移動通信系統(tǒng)之間對頻譜資源的競爭也越來越激烈。2015年11月,在日內(nèi)瓦召開的世界無線電通信大會(WRC-15,World Radiocommunication Conference 2015)決定,對于C、Ku或Ka頻段的衛(wèi)星固定業(yè)務(wù)、衛(wèi)星移動業(yè)務(wù)和廣播業(yè)務(wù)中,還沒有完成全球統(tǒng)一的頻段將被納入新的WRC-19的議題,計(jì)劃將從中選擇適合的頻譜分配給未來的IMT/5G使用。2016年2月,在北京召開了國際電信聯(lián)盟無線通信部門5D工作組(ITU-R-WP5D)會議,重點(diǎn)討論了5G通信系統(tǒng)與衛(wèi)星通信系統(tǒng)的頻譜資源共存與分配問題,5G系統(tǒng)在6 GHz以下的候選頻譜中,3 400 MHz-3 600 MHz和4 800 MHz-4 990 MHz與目前的衛(wèi)星固定業(yè)務(wù)之間存在一定的干擾問題;在6 GHz以上的頻段將在2019年世界無線電通信大會(WRC-19)中展開討論。未來的地面通信系統(tǒng)與衛(wèi)星通信在高頻段的頻譜資源競爭將會更加激烈。 為了適應(yīng)不斷增加的帶寬和數(shù)據(jù)速率需求,衛(wèi)星通信系統(tǒng)需要從目前普遍使用的C/Ku頻段(各有500 MHz帶寬)向頻率更高的Ka(2.5 GHz帶寬)、Q/V(各有10 GHz帶寬)甚至更高的頻段擴(kuò)展。近幾年,衛(wèi)星通信頻譜資源擴(kuò)展使用最廣泛的是Ka頻段,目前國際電信聯(lián)盟(ITU,International Telecommunication Union)為Ka頻段的頻譜使用劃分為三段:17.3-17.7 GHz,17.7-19.7 GHz和27.5-29.5 GHz,詳細(xì)分配情況如表1。 衛(wèi)星通信中使用Ka頻段與Ku頻段或其他較低的頻段相比,具有一些顯著優(yōu)勢。Ka頻段不僅具有更多的可用帶寬,而且與同類尺寸的低頻段天線相比Ka頻段天線具有更高的增益。Ka頻段的缺點(diǎn)是容易受到不利天氣的影響,嚴(yán)重的雨衰和雪衰會導(dǎo)致通信質(zhì)量大幅下降。因此,需要設(shè)計(jì)適合的地面通信系統(tǒng)和可靠的空中傳輸鏈路,通過調(diào)整通信系統(tǒng)參數(shù)如自適應(yīng)編碼調(diào)制(ACM,Adaptive Coding Modulation)可以減輕雨衰對通信造成的影響[21-22]。 目前,正在對40~60 GHz的EHF(extremely high frequency)頻段展開研究,探索該高頻段在衛(wèi)星通信中的應(yīng)用[23]。向更高頻段的頻譜擴(kuò)展推動了寬帶衛(wèi)星通信的快速發(fā)展,高通量衛(wèi)星(HTS,high throughput satellite)系統(tǒng)應(yīng)運(yùn)而生。HTS系統(tǒng)結(jié)合了頻譜復(fù)用和點(diǎn)波束天線技術(shù),采用高階調(diào)制,使用超寬帶轉(zhuǎn)發(fā)器,從而實(shí)現(xiàn)前所未有的帶寬和吞吐量,將大幅降低傳輸單位比特?cái)?shù)據(jù)的價格[24]。 盡管頻譜資源在不斷地向更高頻段擴(kuò)展,但有限的頻譜資源始終是限制衛(wèi)星通信發(fā)展的關(guān)鍵性因素??梢灶A(yù)見,隨著越來越多的業(yè)務(wù)和應(yīng)用在Ka頻段廣泛使用,頻譜擁堵將使未來的Ka頻段的業(yè)務(wù)發(fā)展變得十分困難。HTS系統(tǒng)提供的高性能服務(wù)已經(jīng)受到Ka波段頻譜稀缺的影響[25]。衛(wèi)星通信網(wǎng)絡(luò)的頻譜管理與規(guī)劃將在衛(wèi)星通信系統(tǒng)設(shè)計(jì)中起到重要的作用,為了進(jìn)一步提高衛(wèi)星頻譜資源利用率,一些研究者開始設(shè)計(jì)基于衛(wèi)星Ka頻段分配的認(rèn)知無線電[26],在干擾可接收的條件下允許衛(wèi)星通信以共享方式使用頻譜。 3 衛(wèi)星通信近期發(fā)展 衛(wèi)星通信的迅速發(fā)展得益于通信技術(shù)、信號處理技術(shù)、通信設(shè)備制造水平的進(jìn)步和通信商業(yè)需求的不斷增長?,F(xiàn)階段的衛(wèi)星通信系統(tǒng)正在嘗試異構(gòu)網(wǎng)共存,提供多樣化的接入服務(wù)。未來的衛(wèi)星通信將不再只是地面通信系統(tǒng)的補(bǔ)充,而是與地面移動通信系統(tǒng)和寬帶因特網(wǎng)的緊密融合。星地融合通信和衛(wèi)星寬帶通信將是近期發(fā)展的熱點(diǎn)。 3.1 星地融合通信 地面通信系統(tǒng)無法實(shí)現(xiàn)真正的“無縫覆蓋”,在人口密度較低的農(nóng)村地區(qū)通常沒有足夠的蜂窩網(wǎng),在海上和航空領(lǐng)域,更是無法通過地面網(wǎng)絡(luò)來實(shí)現(xiàn)通信。衛(wèi)星通信獲得成功的關(guān)鍵是它的廣域覆蓋和快速向市場提供新業(yè)務(wù),在市場相對較小的海上和航空領(lǐng)域衛(wèi)星通信將長期保持優(yōu)勢地位,但是對于市場龐大的陸地領(lǐng)域,如:固定、移動通信和廣播業(yè)務(wù),將取決于衛(wèi)星網(wǎng)絡(luò)與地面通信網(wǎng)絡(luò)融合通信(星地融合通信)。衛(wèi)星通信新技術(shù)的發(fā)展,如多波束天線和星上處理等技術(shù)正在使星地融合通信成為現(xiàn)實(shí)[27]。 長期以來,由于地面蜂窩移動通信能夠提供可靠且價格合理的服務(wù),而衛(wèi)星通信所需要的視距傳播在市區(qū)難以保證,激烈的市場競爭和自身通信特性的限制導(dǎo)致移動衛(wèi)星通信業(yè)務(wù)普及率很低。在21世紀(jì)初,為了克服上述的一些問題,并幫助衛(wèi)星通信進(jìn)入主流市場,衛(wèi)星通信運(yùn)營商成功得到了電信管理部門在世界許多地區(qū)組建星地融合通信網(wǎng)絡(luò)的授權(quán),通過增加地面部分?jǐn)U展衛(wèi)星通信網(wǎng)絡(luò),開啟了真正無所不在的衛(wèi)星通信,從而徹底改變了移動衛(wèi)星通信[5]。美國的FCC(Federal Communications Commission)和歐洲的European Commission已經(jīng)授權(quán)衛(wèi)星運(yùn)營商增加地面輔助基站(ATC,Ancillary Terrestrial Component)到衛(wèi)星網(wǎng)絡(luò)。星地融合通信網(wǎng)絡(luò)將會綜合利用地面蜂窩移動通信(頻率復(fù)用和非視距傳播的特性)和衛(wèi)星通信(廣域覆蓋范圍的特性)雙方的共同優(yōu)點(diǎn)。例如,可以利用衛(wèi)星網(wǎng)絡(luò)的抗毀性和地面4G網(wǎng)絡(luò)的高效性,來為自然或人為災(zāi)害提供應(yīng)急通信[28]。典型的星地融合通信網(wǎng)絡(luò)如圖1。 星地融合通信系統(tǒng)的主要優(yōu)點(diǎn)是補(bǔ)充移動衛(wèi)星通信的覆蓋盲區(qū)、增加衛(wèi)星通信容量、實(shí)現(xiàn)無處不在的數(shù)字通信。從通信發(fā)展趨勢來看,未來5G通信的發(fā)展應(yīng)該是多層次的異構(gòu)網(wǎng),包括地面蜂窩2G/3G、4G、陸地LAN(Local Area Networks)、地面廣播和衛(wèi)星通信網(wǎng)。星地通信網(wǎng)絡(luò)融合的關(guān)鍵是衛(wèi)星通信和地面通信系統(tǒng)與其他通信系統(tǒng)之間的協(xié)作,從而使得系統(tǒng)獲得最佳的使用效率和用戶體驗(yàn)。 同時,星地融合通信系統(tǒng)也面臨著一些挑戰(zhàn): (1)無縫切換:通信網(wǎng)絡(luò)融合的基本需求就是在移動衛(wèi)星通信和地面通信網(wǎng)絡(luò)之間實(shí)現(xiàn)無縫切換,設(shè)計(jì)一個可靠的切換機(jī)制必須考慮衛(wèi)星通信和地面通信系統(tǒng)在發(fā)射功率和傳輸時延之間的差異。文獻(xiàn)[29]提出了自適應(yīng)切換算法,通過估計(jì)衛(wèi)星和地面通信網(wǎng)絡(luò)接收的信號強(qiáng)度降低到預(yù)設(shè)門限的概率,來實(shí)現(xiàn)無縫切換。 (2)通信兼容:兼容性要求同一設(shè)備能在衛(wèi)星和地面通信網(wǎng)絡(luò)中通用,需要重新設(shè)計(jì)空中接口和兩者的物理層,從而保證用戶終端具有相同的使用頻率和基帶芯片[30]。 (3)干擾:干擾是星地融合通信網(wǎng)絡(luò)的主要問題之一,在網(wǎng)絡(luò)內(nèi)部或衛(wèi)星與地面通信網(wǎng)絡(luò)之間可能存在著干擾。最嚴(yán)重的干擾是地面用戶使用相同的上行頻率傳輸?shù)竭_(dá)衛(wèi)星,星地融合通信運(yùn)營商需要同時在空管基站和衛(wèi)星網(wǎng)關(guān)中采用干擾消除技術(shù)[31-32]。此外,設(shè)計(jì)優(yōu)化的頻譜管理策略,提高衛(wèi)星部分和地面部分的頻率復(fù)用效率,也是降低星地網(wǎng)絡(luò)之間干擾的有效方法。 3.2 衛(wèi)星寬帶通信 對于互聯(lián)網(wǎng)接入而言,衛(wèi)星通信通常被作為傳統(tǒng)的接入網(wǎng)絡(luò)(如3G、電纜或ADSL)無法為用戶提供服務(wù)情況下的一種補(bǔ)充通信方式[33]。近幾年來,通信行業(yè)對高數(shù)據(jù)率傳輸業(yè)務(wù)和寬帶多媒體應(yīng)用的需求空前增長,同時衛(wèi)星通信技術(shù)快速發(fā)展,如多波束天線、星上處理、頻譜復(fù)用技術(shù),尤其是新的TCP版本和改進(jìn)的TCP加速機(jī)制,顯著提高了基于衛(wèi)星鏈路的TCP性能[34-36],使衛(wèi)星寬帶通信成為現(xiàn)實(shí)。 隨著寬帶衛(wèi)星通信系統(tǒng)和空間組網(wǎng)技術(shù)的發(fā)展,互聯(lián)網(wǎng)逐漸從地面網(wǎng)絡(luò)擴(kuò)展到空間網(wǎng)絡(luò),衛(wèi)星通信逐步進(jìn)入互聯(lián)網(wǎng)應(yīng)用時代??臻g網(wǎng)絡(luò)是以同步或中低軌道衛(wèi)星等空間平臺為載體,通過一體化互聯(lián)網(wǎng)支持實(shí)時采集、傳輸和處理大數(shù)據(jù),為用戶提供更大范圍和更高質(zhì)量的互聯(lián)網(wǎng)服務(wù)。Google公司于2014年宣布將投資10億美元發(fā)射180顆低軌小衛(wèi)星,提供互聯(lián)網(wǎng)業(yè)務(wù);近期,OneWeb公司啟動世界上最大的衛(wèi)星互聯(lián)網(wǎng)計(jì)劃,將發(fā)射648顆衛(wèi)星建立一個覆蓋全球的低軌道衛(wèi)星網(wǎng)絡(luò),后續(xù)還將發(fā)射2 400顆衛(wèi)星,以提供寬帶互聯(lián)網(wǎng)接入服務(wù)。 目前正在應(yīng)用的典型衛(wèi)星寬帶系統(tǒng)是國際海事衛(wèi)星公司(Inmarsat)的Global Xpress全球移動衛(wèi)星寬帶系統(tǒng)[37]。Global Xpress是世界第一個商用高速寬帶衛(wèi)星通信網(wǎng)絡(luò),運(yùn)行在Ka頻段,由三顆GEO衛(wèi)星組成,每顆衛(wèi)星提供89個Ka點(diǎn)波束。從2013年12月發(fā)射第一顆衛(wèi)星Inmarsat-5 F1到2015年8月成功發(fā)射第三顆衛(wèi)星Inmarsat-5 F1以來,Global Xpress的三顆衛(wèi)星提供全球超過99%覆蓋區(qū)域的高速移動寬帶通信業(yè)務(wù)。Global Xpress在容量、吞吐量、用戶終端成本和通話費(fèi)用方面有了顯著的改善。系統(tǒng)使用Ka波段(2.5 GHz可用頻譜資源),是Ku波段帶寬的5倍,通過60 cm小終端支持下行高達(dá)50 Mb/s和上行5 Mb/s的高數(shù)據(jù)率[38],前向鏈路采用了TDMA接入,回傳鏈路采用了自適應(yīng)調(diào)制和編碼,以及采用了功率控制和分集技術(shù)等來彌補(bǔ)衰落造成的影響,提高了信道利用率。 通信技術(shù)和寬帶網(wǎng)絡(luò)發(fā)展水平雖然有顯著的提升,但寬帶通信的普及程度還相對比較薄弱。ITU在2015年9月份公布的研究報告顯示[39],地球上仍有40億人無法接入互聯(lián)網(wǎng),其中90%人口生活在發(fā)展中國家。工信部發(fā)布的統(tǒng)計(jì)數(shù)據(jù)表明[40],截至2015年8月底,我國尚有約5萬個未通寬帶網(wǎng)絡(luò)的行政村,農(nóng)村寬帶家庭普及率比城市地區(qū)低約40個百分點(diǎn)。構(gòu)建衛(wèi)星寬帶通信網(wǎng)絡(luò)有望改變這一局面。由于衛(wèi)星通信具有廣泛的覆蓋范圍,較高的成本效率尤其是在低或中等的人口密度的區(qū)域和快速提供通信服務(wù),可以預(yù)見,衛(wèi)星通信系統(tǒng)將擴(kuò)展高質(zhì)量的電信網(wǎng)絡(luò),實(shí)現(xiàn)無處不在的寬帶網(wǎng)絡(luò)接入,在全球?qū)拵ㄐ欧?wù)中發(fā)揮重要的作用。 4 結(jié)束語 衛(wèi)星通信技術(shù)近期發(fā)展的關(guān)鍵是高效的功率利用和帶寬調(diào)制、傳輸鏈路的自適應(yīng)編碼調(diào)制、完善突發(fā)性業(yè)務(wù)接入技術(shù)、資源預(yù)留算法、星上處理、網(wǎng)絡(luò)融合和低成本移動終端,從而確保衛(wèi)星網(wǎng)絡(luò)與地面蜂窩系統(tǒng)的無縫融合,提供穩(wěn)定可靠的衛(wèi)星寬帶通信服務(wù),同時有效地利用衛(wèi)星軌道和頻譜資源。 衛(wèi)星通信在未來信息通信系統(tǒng)中的發(fā)揮著關(guān)鍵的作用,衛(wèi)星通信的無縫覆蓋和大容量的優(yōu)勢將產(chǎn)生巨大的經(jīng)濟(jì)價值和社會效益,其發(fā)展前景非常具有吸引力。同時,衛(wèi)星通信也面臨著很大的挑戰(zhàn)。例如,衛(wèi)星軌道和頻譜資源正越來越緊缺、衛(wèi)星干擾越來越頻繁、通信網(wǎng)絡(luò)融合中高效切換技術(shù)和頻譜分配策略需要進(jìn)一步的完善、衛(wèi)星寬帶通信中的帶寬管理和服務(wù)質(zhì)量控制等。衛(wèi)星通信網(wǎng)絡(luò)也需要重新考慮如何增強(qiáng)交互性、動態(tài)性、情景感知以及網(wǎng)絡(luò)融合效率等方面問題。 參考文獻(xiàn) [1] PELTON J N.Overview of satellite communications[J].Progress in Astronautics and Aeronautics,2003,202:1-18. [2] RODDY D.Satellite communications[M].McGraw-Hill Prof Med/Tech,2006:46-57. [3] LUTZ E,WERNER M,JAHN A.Satellite systems for personal and broadband communications[M].Berlin:Springer,2012:68-80. [4] EVANS B G,THOMPSON P T,CORAZZA G E,et al.1945-2010: 65 years of satellite history from early visions to latest missions[J].Proceedings of the IEEE,2011,99(11):1840-1857. [5] SADEK M,AISSA S.Personal satellite communication:technologies and challenges[J].Wireless Communications,IEEE,2012,19(6):28-35. [6] AKYILDIZ I F,AKAN B,CHEN C,et al.InterPlaNetary Internet:state-of-the-art and research challenges[J].Computer Networks,2003,43(2):75-112. [7] CAINI C,CRUICKSHANK H,F(xiàn)ARRELL S,et al.Delay-and disruption-tolerant networking(DTN):an alternative solution for future satellite networking applications[J].Proceedings of the IEEE,2011,99(11):80-97. [8] TALEB T,HADJADJ-AOUL Y,AHMED T.Challenges,opportunitiesMand solutions for converged satellite and terrestrial networks[J].Wireless Communications,IEEE,2011,18(1):46-52. [9] CORAZZA G E.The integral satCom initiative towards FP7[M].Satellite Communications and Navigation Systems.Springer US,2008:629-632. [10] 易克初,李怡,孫晨華,等.衛(wèi)星通信的近期發(fā)展與前景展望[J].通信學(xué)報,2015,36(6):17-33. 11-40略
|
|