數(shù)姐有話 對(duì)于初二的同學(xué)來說,三角形與全等三角形,才是同學(xué)們正式接觸幾何,而在這塊內(nèi)容中,輔助線又是必不可少的,所以,希望同學(xué)們好好學(xué)習(xí)這塊內(nèi)容,對(duì)于以后學(xué)習(xí)更難的幾何知識(shí)打下基礎(chǔ)! 例:已知D為△ABC內(nèi)任一點(diǎn),求證:∠BDC>∠BAC 證明: (一):延長(zhǎng)BD交AC于E, ∵∠BDC是△EDC 的外角, ∴∠BDC>∠DEC 同理:∠DEC>∠BAC ∴∠BDC>∠BAC 證法(二):連結(jié)AD,并延長(zhǎng)交BC于F ∵∠BDF是△ABD的外角, ∴∠BDF>∠BAD 同理∠CDF>∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD 即:∠BDC>∠BAC 例:已知,如圖,AD為△ABC的中線且∠1 = ∠2,∠3 = ∠4, 求證:BE+CF>EF 證明: 在DA上截取DN = DB,連結(jié)NE、NF, 則DN= DC 在△BDE和△NDE中, DN = DB ∠1 = ∠2 ED = ED ∴△BDE≌△NDE ∴BE = NE 同理可證:CF = NF 在△EFN中,EN+FN>EF ∴BE+CF>EF 例:已知,如圖,AD為△ABC的中線,且∠1 = ∠2,∠3 = ∠4,求證:BE+CF>EF 證明: 延長(zhǎng)ED到M,使DM = DE,連結(jié)CM、FM △BDE和△CDM中, BD = CD ∠1 = ∠5 ED = MD ∴△BDE≌△CDM ∴CM = BE 又∵∠1 = ∠2,∠3 = ∠4 ∠1+∠2+∠3 + ∠4 = 180° ∴∠3 +∠2 = 90° 即∠EDF = 90° ∴∠FDM = ∠EDF = 90° △EDF和△MDF中 ED = MD ∠FDM = ∠EDF DF = DF ∴△EDF≌△MDF ∴EF = MF ∵在△CMF中,CF+CM >MF BE+CF>EF (此題也可加倍FD,證法同上) 例:已知,如圖,AD為△ABC的中線,求證:AB+AC>2AD 證明: 延長(zhǎng)AD至E,使DE = AD,連結(jié)BE ∵AD為△ABC的中線 ∴BD = CD 在△ACD和△EBD中 BD = CD ∠1 = ∠2 AD = ED ∴△ACD≌△EBD ∵△ABE中有AB+BE>AE ∴AB+AC>2AD 截長(zhǎng)法:在較長(zhǎng)的線段上截取一條線段等于較短線段; 補(bǔ)短法:延長(zhǎng)較短線段和較長(zhǎng)線段相等. 這兩種方法統(tǒng)稱截長(zhǎng)補(bǔ)短法. 當(dāng)已知或求證中涉及到線段a、b、c、d有下列情況之一時(shí)用此種方法: ①a>b ②a±b = c ③a±b = c±d 例:已知,如圖,在△ABC中,AB>AC,∠1 = ∠2,P為AD上任一點(diǎn), 求證:AB-AC>PB-PC 證明: ⑴截長(zhǎng)法:在AB上截取AN = AC,連結(jié)PN 在△APN和△APC中, AN = AC ∠1 = ∠2 AP = AP ∴△APN≌△APC ∴PC = PN ∵△BPN中有PB-PC<BN ∴PB-PC<AB-AC ⑵補(bǔ)短法:延長(zhǎng)AC至M,使AM = AB,連結(jié)PM 在△ABP和△AMP中 AB = AM ∠1 = ∠2 AP = AP ∴△ABP≌△AMP ∴PB = PM 又∵在△PCM中有CM >PM-PC ∴AB-AC>PB-PC 練習(xí): 1.已知,在△ABC中,∠B = 60°,AD、CE是△ABC的角平分線,并且它們交于點(diǎn)O 求證:AC = AE+CD 2.已知,如圖,AB∥CD,∠1 = ∠2 ,∠3 = ∠4. 求證:BC = AB+CD ①觀察要證線段在哪兩個(gè)可能全等的三角形中,然后證這兩個(gè)三角形全等。 ②若圖中沒有全等三角形,可以把求證線段用和它相等的線段代換,再證它們所在的三角形全等. ③如果沒有相等的線段代換,可設(shè)法作輔助線構(gòu)造全等三角形. 例:如圖,已知,BE、CD相交于F,∠B = ∠C,∠1 = ∠2,求證:DF = EF 證明:∵∠ADF =∠B+∠3 ∠AEF = ∠C+∠4 又∵∠3 = ∠4 ∠B = ∠C ∴∠ADF = ∠AEF 在△ADF和△AEF中 ∠ADF = ∠AEF ∠1 = ∠2 AF = AF ∴△ADF≌△AEF ∴DF = EF 例:已知,如圖Rt△ABC中,AB = AC,∠BAC = 90°,過A作任一條直線AN,作BD⊥AN于D,CE⊥AN于E,求證:DE = BD-CE 證明:
∴∠1+∠2 = 90o ∠1+∠3 = 90° ∴∠2 = ∠3 ∵BD⊥AN CE⊥AN ∴∠BDA =∠AEC = 90° 在△ABD和△CAE中, ∠BDA =∠AEC ∠2 = ∠3 AB = AC ∴△ABD≌△CAE ∴BD = AE且AD = CE ∴AE-AD = BD-CE ∴DE = BD-CE 例:AD為△ABC的中線,且CF⊥AD于F,BE⊥AD的延長(zhǎng)線于E 求證:BE = CF 證明:(略) 例:已知AC = BD,AD⊥AC于A,BCBD于B 求證:AD = BC 證明:分別延長(zhǎng)DA、CB交于點(diǎn)E ∵AD⊥AC BC⊥BD ∴∠CAE = ∠DBE = 90° 在△DBE和△CAE中 ∠DBE =∠CAE BD = AC ∠E =∠E ∴△DBE≌△CAE ∴ED = EC,EB = EA ∴ED-EA = EC- EB ∴AD = BC 例:已知,如圖,AB∥CD,AD∥BC 求證:AB = CD 證明:
∵AB∥CD,AD∥BC ∴∠1 = ∠2 在△ABC和△CDA中, ∠1 = ∠2 AC = CA ∠3 = ∠4 ∴△ABC≌△CDA ∴AB = CD 練習(xí): 已知,如圖,AB = DC,AD = BC,DE = BF, 求證:BE = DF 例:已知,如圖,在Rt△ABC中,AB = AC,∠BAC = 90°,∠1 = ∠2 ,CE⊥BD的延長(zhǎng)線于E 求證:BD = 2CE 證明: 分別 延長(zhǎng)BA、CE交于F ∵BE⊥CF ∴∠BEF =∠BEC = 90° 在△BEF和△BEC中 ∠1 = ∠2 BE = BE ∠BEF =∠BEC ∴△BEF≌△BEC ∴CE = FE =1/2CF ∵∠BAC = 90° , BE⊥CF ∴∠BAC = ∠CAF = 90° ∠1+∠BDA = 90° ∠1+∠BFC = 90° ∠BDA = ∠BFC 在△ABD和△ACF中 ∠BAC = ∠CAF ∠BDA = ∠BFC AB = AC ∴△ABD≌△ACF ∴BD = CF ∴BD = 2CE 練習(xí): 已知,如圖,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D, 求證:AB-AC = 2CD 例:已知,如圖,AC、BD相交于O,且AB = DC,AC = BD, 求證:∠A = ∠D 證明:(連結(jié)BC,過程略) 例:已知,如圖,AB = DC,∠A = ∠D 求證:∠ABC = ∠DCB 證明:分別取AD、BC中點(diǎn)N、M, 連結(jié)NB、NM、NC(過程略) 例:已知,如圖,∠1 = ∠2 ,P為BN上一點(diǎn),且PD⊥BC于D,AB+BC = 2BD, 求證:∠BAP+∠BCP = 180° 證明:過P作PE⊥BA于E ∵PD⊥BC,∠1 = ∠2 ∴PE = PD 在Rt△BPE和Rt△BPD中 BP = BP PE = PD ∴Rt△BPE≌Rt△BPD ∴BE = BD ∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE ∴AE = CD ∵PE⊥BE,PD⊥BC ∠PEB =∠PDC = 90° 在△PEA和△PDC中 PE = PD ∠PEB =∠PDC AE =CD ∴△PEA≌△PDC ∴∠PCB = ∠EAP ∵∠BAP+∠EAP = 180° ∴∠BAP+∠BCP = 180° 練習(xí): 1.已知,如圖,PA、PC分別是△ABC外角∠MAC與∠NCA的平分線,它們交于P,PD⊥BM于M,PF⊥BN于F,求證:BP為∠MBN的平分線 2. 已知,如圖,在△ABC中,∠ABC =100o,∠ACB = 20°,CE是∠ACB的平分線,D是AC上一點(diǎn),若∠CBD = 20°,求∠CED的度數(shù)。 ⑴作頂角的平分線,底邊中線,底邊高線 例:已知,如圖,AB = AC,BD⊥AC于D, 求證:∠BAC = 2∠DBC 證明: (方法一)作∠BAC的平分線AE,交BC于E,則∠1 = ∠2 = 1/2∠BAC 又∵AB = AC ∴AE⊥BC ∴∠2+∠ACB = 90° ∵BD⊥AC ∴∠DBC+∠ACB = 90° ∴∠2 = ∠DBC ∴∠BAC = 2∠DBC (方法二)過A作AE⊥BC于E(過程略) (方法三)取BC中點(diǎn)E,連結(jié)AE(過程略) ⑵有底邊中點(diǎn)時(shí),常作底邊中線 例:已知,如圖,△ABC中,AB = AC,D為BC中點(diǎn),DE⊥AB于E,DF⊥AC于F, 求證:DE = DF 證明:連結(jié)AD. ∵D為BC中點(diǎn), ∴BD = CD 又∵AB =AC ∴AD平分∠BAC ∵DE⊥AB,DF⊥AC ∴DE = DF ⑶將腰延長(zhǎng)一倍,構(gòu)造直角三角形解題 例:已知,如圖,△ABC中,AB = AC,在BA延長(zhǎng)線和AC上各取一點(diǎn)E、F,使AE = AF,求證:EF⊥BC 證明:延長(zhǎng)BE到N,使AN = AB,連結(jié)CN,則AB = AN = AC ∴∠B = ∠ACB, ∠ACN = ∠ANC ∵∠B+∠ACB+∠ACN+∠ANC = 180° ∴2∠BCA+2∠ACN = 180° ∴∠BCA+∠ACN = 90° 即∠BCN = 90° ∴NC⊥BC ∵AE = AF ∴∠AEF = ∠AFE 又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANC ∴EF∥NC ∴EF⊥BC ⑷常過一腰上的某一已知點(diǎn)做另一腰的平行線 例:已知,如圖,在△ABC中,AB = AC,D在AB上,E在AC延長(zhǎng)線上,且BD = CE,連結(jié)DE交BC于F 求證:DF = EF 證明:(證法一) 過D作DN∥AE,交BC于N,則∠DNB = ∠ACB,∠NDE = ∠E, ∵AB = AC, ∴∠B = ∠ACB ∴∠B =∠DNB ∴BD = DN 又∵BD = CE ∴DN = EC 在△DNF和△ECF中 ∠1 = ∠2 ∠NDF =∠E DN = EC ∴△DNF≌△ECF ∴DF = EF (證法二)
⑸常過一腰上的某一已知點(diǎn)做底的平行線 例:已知,如圖,△ABC中,AB =AC,E在AC上,D在BA延長(zhǎng)線上,且AD = AE,連結(jié)DE 求證:DE⊥BC 證明:(證法一)過點(diǎn)E作EF∥BC交AB于F,則 ∠AFE =∠B ∠AEF =∠C ∵AB = AC ∴∠B =∠C ∴∠AFE =∠AEF ∵AD = AE ∴∠AED =∠ADE 又∵∠AFE+∠AEF+∠AED+∠ADE = 180o ∴2∠AEF+2∠AED = 90o 即∠FED = 90o ∴DE⊥FE 又∵EF∥BC ∴DE⊥BC (證法二)過點(diǎn)D作DN∥BC交CA的延長(zhǎng)線于N,(過程略) (證法三)過點(diǎn)A作AM∥BC交DE于M,(過程略) ⑹常將等腰三角形轉(zhuǎn)化成特殊的等腰三角形------等邊三角形 例:已知,如圖,△ABC中,AB = AC,∠BAC = 80o ,P為形內(nèi)一點(diǎn),若∠PBC = 10o ∠PCB = 30o 求∠PAB的度數(shù). 解法一:以AB為一邊作等邊三角形,連結(jié)CE 則∠BAE =∠ABE = 60o AE = AB = BE ∵AB = AC ∴AE = AC ∠ABC =∠ACB ∴∠AEC =∠ACE ∵∠EAC =∠BAC-∠BAE = 80°-60° = 20° ∴∠ACE = 1/2(180°-∠EAC)= 80° ∵∠ACB= 1/2(180°-∠BAC)= 50° ∴∠BCE =∠ACE-∠ACB = 80°-50° = 30° ∵∠PCB = 30° ∴∠PCB = ∠BCE ∵∠ABC =∠ACB = 50°, ∠ABE = 60° ∴∠EBC =∠ABE-∠ABC = 60°-50° =10° ∵∠PBC = 10° ∴∠PBC = ∠EBC 在△PBC和△EBC中 ∠PBC = ∠EBC BC = BC ∠PCB = ∠BCE ∴△PBC≌△EBC ∴BP = BE ∵AB = BE ∴AB = BP ∴∠BAP =∠BPA ∵∠ABP =∠ABC-∠PBC = 50°-10° = 40° ∴∠PAB = 1/2(180°-∠ABP)= 70° 解法二: 以AC為一邊作等邊三角形,證法同一。 解法三: 以BC為一邊作等邊三角形△BCE,連結(jié)AE,則 EB = EC = BC,∠BEC =∠EBC = 60o ∵EB = EC ∴E在BC的中垂線上 同理A在BC的中垂線上 ∴EA所在的直線是BC的中垂線 ∴EA⊥BC ∠AEB = 1/2∠BEC = 30° =∠PCB 由解法一知:∠ABC = 50° ∴∠ABE = ∠EBC-∠ABC = 10°=∠PBC ∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB ∴△ABE≌△PBC ∴AB = BP ∴∠BAP =∠BPA ∵∠ABP =∠ABC-∠PBC = 50°-10°= 40° ∴∠PAB = 1/2(180o-∠ABP) = 1/2(180°-40°)= 70° ⑴構(gòu)造等腰三角形使二倍角是等腰三角形的頂角的外角 例: 已知,如圖,在△ABC中,∠1 = ∠2,∠ABC = 2∠C, 求證:AB+BD = AC 證明:延長(zhǎng)AB到E,使BE = BD,連結(jié)DE 則∠BED = ∠BDE ∵∠ABD =∠E+∠BDE ∴∠ABC =2∠E ∵∠ABC = 2∠C ∴∠E = ∠C 在△AED和△ACD中 ∠E = ∠C ∠1 = ∠2 AD = AD ∴△AED≌△ACD ∴AC = AE ∵AE = AB+BE ∴AC = AB+BE 即AB+BD = AC ⑵平分二倍角 例:已知,如圖,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC 求證:∠ABC = ∠ACB 證明:作∠BAC的平分線AE交BC于E,則∠BAE = ∠CAE = ∠DBC ∵BD⊥AC ∴∠CBD +∠C = 90o ∴∠CAE+∠C= 90o ∵∠AEC= 180o-∠CAE-∠C= 90o ∴AE⊥BC ∴∠ABC+∠BAE = 90o ∵∠CAE+∠C= 90o ∠BAE = ∠CAE ∴∠ABC = ∠ACB ⑶加倍小角 例:已知,如圖,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC 求證:∠ABC = ∠ACB 證明:作∠FBD =∠DBC,BF交AC于F(過程略) 例:已知,如圖,△ABC中,AB = AC,∠BAC = 120o,EF為AB的垂直平分線,EF交BC于F,交AB于E 求證:BF =1/2FC 證明:連結(jié)AF,則AF = BF ∴∠B =∠FAB ∵AB = AC ∴∠B =∠C ∵∠BAC = 120o ∴∠B =∠C∠BAC =1/2(180°-∠BAC) = 30° ∴∠FAB = 30° ∴∠FAC =∠BAC-∠FAB = 120°-30° =90° 又∵∠C = 30° ∴AF = 1/2FC ∴BF =1/2FC 練習(xí): 已知,如圖,在△ABC中,∠CAB的平分線AD與BC的垂直平分線DE交于點(diǎn)D,DM⊥AB于M,DN⊥AC延長(zhǎng)線于N 求證:BM = CN 例:已知,如圖,在△ABC中,∠B =2∠C,AD⊥BC于D 求證:CD = AB+BD 證明: (一)在CD上截取DE = DB,連結(jié)AE,則AB = AE ∴∠B =∠AEB ∵∠B = 2∠C ∴∠AEB = 2∠C 又∵∠AEB = ∠C+∠EAC ∴∠C =∠EAC ∴AE = CE 又∵CD = DE+CE ∴CD = BD+AB (二)延長(zhǎng)CB到F,使DF = DC,連結(jié)AF則AF =AC(過程略) 例:已知,如圖,在△ABC中,BC = 2AB, ∠ABC = 2∠C,BD = CD 求證:△ABC為直角三角形 證明:過D作DE⊥BC,交AC于E,連結(jié)BE,則BE = CE, ∴∠C =∠EBC ∵∠ABC = 2∠C ∴∠ABE =∠EBC ∵BC = 2AB,BD = CD ∴BD = AB 在△ABE和△DBE中 AB = BD ∠ABE =∠EBC BE = BE ∴△ABE≌△DBE ∴∠BAE = ∠BDE ∵∠BDE = 90° ∴∠BAE = 90° 即△ABC為直角三角形 例:已知,如圖,在△ABC中,∠A = 90°,DE為BC的垂直平分線 求證:BE2-AE2 = AC2 證明:連結(jié)CE,則BE = CE ∵∠A = 90° ∴AE2+AC2 = EC2 ∴AE2+AC2= BE2 ∴BE2-AE2 = AC2 練習(xí): 已知,如圖,在△ABC中,∠BAC = 90°,AB = AC,P為BC上一點(diǎn) 求證:PB2+PC2= 2PA2 例:已知,如圖,在△ABC中,∠B = 45°,∠C = 30°,AB =根號(hào)2,求AC的長(zhǎng). 解:過A作AD⊥BC于D ∴∠B+∠BAD = 90°, ∵∠B = 45o,∠B = ∠BAD = 45°, ∴AD = BD ∵AB2 = AD2+BD2,AB =根號(hào)2 ∴AD = 1 ∵∠C = 30°,AD⊥BC ∴AC = 2AD = 2 |
|