第三章 方程(組)
考點(diǎn)一、一元一次方程的概念 (6分)
1、方程 含有未知數(shù)的等式叫做方程。 2、方程的解 能使方程兩邊相等的未知數(shù)的值叫做方程的解。 3、等式的性質(zhì) (1)等式的兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式。 (2)等式的兩邊都乘以(或除以)同一個(gè)數(shù)(除數(shù)不能是零),所得結(jié)果仍是等式。 4、一元一次方程 只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程,其中方程 考點(diǎn)二、一元二次方程 (6分)
1、一元二次方程 含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式 考點(diǎn)三、一元二次方程的解法 (10分)
1、直接開平方法 利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如 2、配方法 配方法是一種重要的數(shù)學(xué)方法,它不僅在解一元二次方程上有所應(yīng)用,而且在數(shù)學(xué)的其他領(lǐng)域也有著廣泛的應(yīng)用。配方法的理論根據(jù)是完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡(jiǎn)單易行,是解一元二次方程最常用的方法。 考點(diǎn)四、一元二次方程根的判別式 (3分)
根的判別式 一元二次方程 考點(diǎn)五、一元二次方程根與系數(shù)的關(guān)系 (3分)
如果方程 考點(diǎn)六、分式方程 (8分)
1、分式方程 分母里含有未知數(shù)的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是將“分式方程”轉(zhuǎn)化為“整式方程”。它的一般解法是: (1)去分母,方程兩邊都乘以最簡(jiǎn)公分母 (2)解所得的整式方程 (3)驗(yàn)根:將所得的根代入最簡(jiǎn)公分母,若等于零,就是增根,應(yīng)該舍去;若不等于零,就是原方程的根。 3、分式方程的特殊解法 換元法: 換元法是中學(xué)數(shù)學(xué)中的一個(gè)重要的數(shù)學(xué)思想,其應(yīng)用非常廣泛,當(dāng)分式方程具有某種特殊形式,一般的去分母不易解決時(shí),可考慮用換元法。 考點(diǎn)七、二元一次方程組 (8~10分)
1、二元一次方程 含有兩個(gè)未知數(shù),并且未知項(xiàng)的最高次數(shù)是1的整式方程叫做二元一次方程,它的一般形式是( 2、二元一次方程的解 使二元一次方程左右兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。 3、二元一次方程組 兩個(gè)(或兩個(gè)以上)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。 4二元一次方程組的解 使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數(shù)的值,叫做二元一次方程組的解。 5、二元一次方正組的解法 (1)代入法(2)加減法 6、三元一次方程 把含有三個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程。 7、三元一次方程組 由三個(gè)(或三個(gè)以上)一次方程組成,并且含有三個(gè)未知數(shù)的方程組,叫做三元一次方程組。 |
|