一区二区三区日韩精品-日韩经典一区二区三区-五月激情综合丁香婷婷-欧美精品中文字幕专区

分享

希爾伯特的23個問題

 jxaylbh 2010-06-03
希爾伯特的23個問題
 
希爾伯特(Hilbert D,1862.1.23~1943.2.14)是二十世紀(jì)上半葉德國乃至全世界最偉大的數(shù)學(xué)家之一。他在橫跨兩個世紀(jì)的六十年的研究生涯中,幾乎走遍了現(xiàn)代數(shù)學(xué)所有前沿陣地,從而把他的思想深深地滲透進了整個現(xiàn)代數(shù)學(xué)。希爾伯特是哥廷根數(shù)學(xué)學(xué)派的核心,他以其勤奮的工作和真誠的個人品質(zhì)吸引了來自世界各地的年青學(xué)者,使哥廷根的傳統(tǒng)在世界產(chǎn)生影響。希爾伯特去世時,德國《自然》雜志發(fā)表過這樣的觀點:現(xiàn)在世界上難得有一位數(shù)學(xué)家的工作不是以某種途徑導(dǎo)源于希爾伯特的工作。他像是數(shù)學(xué)世界的亞歷山大,在整個數(shù)學(xué)版圖上,留下了他那顯赫的名字。

  1900年,希爾伯特在巴黎數(shù)學(xué)家大會上提出了23個最重要的問題供二十世紀(jì)的數(shù)學(xué)家們?nèi)パ芯?,這就是著名的"希爾伯特23個問題"。

  1975年,在美國伊利諾斯大學(xué)召開的一次國際數(shù)學(xué)會議上,數(shù)學(xué)家們回顧了四分之三個世紀(jì)以來希爾伯特23個問題的研究進展情況。當(dāng)時統(tǒng)計,約有一半問題已經(jīng)解決了,其余一半的大多數(shù)也都有重大進展。

  1976年,在美國數(shù)學(xué)家評選的自1940年以來美國數(shù)學(xué)的十大成就中,有三項就是希爾伯特第1、第5、第10問題的解決。由此可見,能解決希爾伯特問題,是當(dāng)代數(shù)學(xué)家的無上光榮。

  下面摘錄的是1987年出版的《數(shù)學(xué)家小辭典》以及其它一些文獻中收集的希爾伯特23個問題及其解決情況:

  1. 連續(xù)統(tǒng)假設(shè) 1874年,康托猜測在可列集基數(shù)和實數(shù)基數(shù)之間沒有別的基數(shù),這就是著名的連續(xù)統(tǒng)假設(shè)。1938年,哥德爾證明了連續(xù)統(tǒng)假設(shè)和世界公認(rèn)的策梅洛--弗倫克爾集合論公理系統(tǒng)的無矛盾性。1963年,美國數(shù)學(xué)家科亨證明連續(xù)假設(shè)和策梅洛--倫克爾集合論公理是彼此獨立的。因此,連續(xù)統(tǒng)假設(shè)不能在策梅洛--弗倫克爾公理體系內(nèi)證明其正確性與否。希爾伯特第1問題在這個意義上已獲解決。

  2. 算術(shù)公理的相容性 歐幾里得幾何的相容性可歸結(jié)為算術(shù)公理的相容性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明。1931年,哥德爾發(fā)表的不完備性定理否定了這種看法。1936年德國數(shù)學(xué)家根茨在使用超限歸納法的條件下證明了算術(shù)公理的相容性。

  1988年出版的《中國大百科全書》數(shù)學(xué)卷指出,數(shù)學(xué)相容性問題尚未解決。

  3. 兩個等底等高四面體的體積相等問題

  問題的意思是,存在兩個等邊等高的四面體,它們不可分解為有限個小四面體,使這兩組四面體彼此全等。M.W.德恩1900年即對此問題給出了肯定解答。

  4. 兩點間以直線為距離最短線問題 此問題提得過于一般。滿足此性質(zhì)的幾何學(xué)很多,因而需增加某些限制條件。1973年,蘇聯(lián)數(shù)學(xué)家波格列洛夫宣布,在對稱距離情況下,問題獲得解決。

  《中國大百科全書》說,在希爾伯特之后,在構(gòu)造與探討各種特殊度量幾何方面有許多進展,但問題并未解決。

  5.一個連續(xù)變換群的李氏概念,定義這個群的函數(shù)不假定是可微的 這個問題簡稱連續(xù)群的解析性,即:是否每一個局部歐氏群都有一定是李群?中間經(jīng)馮·諾伊曼(1933,對緊群情形)、邦德里雅金(1939,對交換群情形)、謝瓦莢(1941,對可解群情形)的努力,1952年由格利森、蒙哥馬利、齊賓共同解決,得到了完全肯定的結(jié)果。

  6.物理學(xué)的公理化 希爾伯特建議用數(shù)學(xué)的公理化方法推演出全部物理,首先是概率和力學(xué)。1933年,蘇聯(lián)數(shù)學(xué)家柯爾莫哥洛夫?qū)崿F(xiàn)了將概率論公理化。后來在量子力學(xué)、量子場論方面取得了很大成功。但是物理學(xué)是否能全盤公理化,很多人表示懷疑。

  7.某些數(shù)的無理性與超越性 1934年,A.O.蓋爾方德和T.施奈德各自獨立地解決了問題的后半部分,即對于任意代數(shù)數(shù)α≠0 ,1,和任意代數(shù)無理數(shù)β證明了αβ 的超越性。

  8.素數(shù)問題 包括黎曼猜想、哥德巴赫猜想及孿生素數(shù)問題等。一般情況下的黎曼猜想仍待解決。哥德巴赫猜想的最佳結(jié)果屬于陳景潤(1966),但離最解決尚有距離。目前孿生素數(shù)問題的最佳結(jié)果也屬于陳景潤。

  9.在任意數(shù)域中證明最一般的互反律 該問題已由日本數(shù)學(xué)家高木貞治(1921)和德國數(shù)學(xué)家E.阿廷(1927)解決。

  10. 丟番圖方程的可解性 能求出一個整系數(shù)方程的整數(shù)根,稱為丟番圖方程可解。希爾伯特問,能否用一種由有限步構(gòu)成的一般算法判斷一個丟番圖方程的可解性?1970年,蘇聯(lián)的IO.B.馬季亞謝維奇證明了希爾伯特所期望的算法不存在。

  11. 系數(shù)為任意代數(shù)數(shù)的二次型 H.哈塞(1929)和C.L.西格爾(1936,1951)在這個問題上獲得重要結(jié)果。

  12. 將阿貝爾域上的克羅克定理推廣到任意的代數(shù)有理域上去 這一問題只有一些零星的結(jié)果,離徹底解決還相差很遠。

  13. 不可能用只有兩個變數(shù)的函數(shù)解一般的七次方程 七次方程的根依賴于3個參數(shù)a、b、c,即x=x (a,b,c)。這個函數(shù)能否用二元函數(shù)表示出來?蘇聯(lián)數(shù)學(xué)家阿諾爾德解決了連續(xù)函數(shù)的情形(1957),維士斯金又把它推廣到了連續(xù)可微函數(shù)的情形(1964)。但如果要求是解析函數(shù),則問題尚未解決。

  14. 證明某類完備函數(shù)系的有限性 這和代數(shù)不變量問題有關(guān)。1958年,日本數(shù)學(xué)家永田雅宜給出了反例。

  15. 舒伯特計數(shù)演算的嚴(yán)格基礎(chǔ) 一個典型問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀解法。希爾伯特要求將問題一般化,并給以嚴(yán)格基礎(chǔ)。現(xiàn)在已有了一些可計算的方法,它和代數(shù)幾何學(xué)不密切聯(lián)系。但嚴(yán)格的基礎(chǔ)迄今仍未確立。

  16. 代數(shù)曲線和代數(shù)曲線面的拓?fù)鋯栴} 這個問題分為兩部分。前半部分涉及代數(shù)曲線含有閉的分枝曲線的最大數(shù)目。后半部分要求討論的極限環(huán)的最大個數(shù)和相對位置,其中X、Y是x、y的n次多項式.蘇聯(lián)的彼得羅夫斯基曾宣稱證明了n=2時極限環(huán)的個數(shù)不超過3,但這一結(jié)論是錯誤的,已由中國數(shù)學(xué)家舉出反例(1979)。

  17. 半正定形式的平方和表示 一個實系數(shù)n元多項式對一切數(shù)組(x1,x2,...,xn) 都恒大于或等于0,是否都能寫成平方和的形式?1927年阿廷證明這是對的。

  18. 用全等多面體構(gòu)造空間 由德國數(shù)學(xué)家比勃馬赫(1910)、莢因哈特(1928)作出部分解決。

  19. 正則變分問題的解是否一定解析 對這一問題的研究很少。C.H.伯恩斯坦和彼得羅夫斯基等得出了一些結(jié)果。

  20. 一般邊值問題 這一問題進展十分迅速,已成為一個很大的數(shù)學(xué)分支。目前還在繼續(xù)研究。

  21. 具有給定單值群的線性微分方程解的存在性證明 已由希爾伯特本人(1905)和H.羅爾(1957)的工作解決。

  22. 由自守函數(shù)構(gòu)成的解析函數(shù)的單值化 它涉及艱辛的黎曼曲面論,1907年P(guān).克伯獲重要突破,其他方面尚未解決。

  23. 變分法的進一步發(fā)展出 這并不是一個明確的數(shù)學(xué)問題,只是談了對變分法的一般看法。20世紀(jì)以來變分法有了很大的發(fā)展。

  這23問題涉及現(xiàn)代數(shù)學(xué)大部分重要領(lǐng)域,推動了20世紀(jì)數(shù)學(xué)的發(fā)展。

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多

    日韩在线一区中文字幕| 欧美一区二区三区高潮菊竹| 日韩欧美综合中文字幕| 欧美日韩成人在线一区| 好吊日成人免费视频公开| 亚洲熟女熟妇乱色一区| 亚洲中文字幕视频一区二区| 国产精品欧美一区二区三区不卡 | 日本精品免费在线观看| 日韩三级黄色大片免费观看| 不卡在线播放一区二区三区| 中文字幕精品人妻一区| 亚洲欧美日韩国产综合在线| 91人妻人人精品人人爽| 久久精品色妇熟妇丰满人妻91| 成人午夜免费观看视频| 99精品国产一区二区青青| 中文字日产幕码三区国产| 又大又紧又硬又湿又爽又猛| 亚洲色图欧美另类人妻| 少妇特黄av一区二区三区| 九九热九九热九九热九九热 | 熟女高潮一区二区三区| 成人精品国产亚洲av久久| 日韩日韩欧美国产精品| 欧美国产日韩在线综合| 女同伦理国产精品久久久| 麻豆最新出品国产精品| 一区二区三区日韩经典| 人妻一区二区三区多毛女| 国产成人在线一区二区三区| 成在线人免费视频一区二区| 亚洲综合精品天堂夜夜| 91插插插外国一区二区婷婷| 久一视频这里只有精品| 麻豆印象传媒在线观看| 免费在线播放不卡视频| 国产传媒高清视频在线| 成人免费观看视频免费| 91欧美日韩中在线视频| 欧美日韩久久精品一区二区|