本章我們將以工業(yè)控制和嵌入式系統(tǒng)中運(yùn)用極為廣泛的串口通信為例講述多線程的典型應(yīng)用。
而網(wǎng)絡(luò)通信也是多線程應(yīng)用最廣泛的領(lǐng)域之一,所以本章的最后一節(jié)也將對多線程網(wǎng)絡(luò)通信進(jìn)行簡短的描述。
1.串口通信
在工業(yè)控制系統(tǒng)中,工控機(jī)(一般都基于PC Windows平臺)經(jīng)常需要與單片機(jī)通過串口進(jìn)行通信。因此,操作和使用PC的串口成為大多數(shù)單片機(jī)、嵌入式系統(tǒng)領(lǐng)域工程師必須具備的能力。
串口的使用需要通過三個(gè)步驟來完成的:
?。?) 打開通信端口;
?。?) 初始化串口,設(shè)置波特率、數(shù)據(jù)位、停止位、奇偶校驗(yàn)等參數(shù)。為了給讀者一個(gè)直觀的印象,下圖從Windows的"控制面板->系統(tǒng)->設(shè)備管理器->通信端口(COM1)"打開COM的設(shè)置窗口:
(3) 讀寫串口。
在WIN32平臺下,對通信端口進(jìn)行操作跟基本的文件操作一樣。
創(chuàng)建/打開COM資源
下列函數(shù)如果調(diào)用成功,則返回一個(gè)標(biāo)識通信端口的句柄,否則返回-1:
HADLE CreateFile(PCTSTR lpFileName, //通信端口名,如"COM1" WORD dwDesiredAccess, //對資源的訪問類型 WORD dwShareMode, //指定共享模式,COM不能共享,該參數(shù)為0 PSECURITY_ATTRIBUTES lpSecurityAttributes, //安全描述符指針,可為NULL WORD dwCreationDisposition, //創(chuàng)建方式 WORD dwFlagsAndAttributes, //文件屬性,可為NULL HANDLE hTemplateFile //模板文件句柄,置為NULL ); |
獲得/設(shè)置COM屬性
下列函數(shù)可以獲得COM口的設(shè)備控制塊,從而獲得相關(guān)參數(shù):
BOOL WINAPI GetCommState( HANDLE hFile, //標(biāo)識通信端口的句柄 LPDCB lpDCB //指向一個(gè)設(shè)備控制塊(DCB結(jié)構(gòu))的指針 ); |
如果要調(diào)整通信端口的參數(shù),則需要重新配置設(shè)備控制塊,再用WIN32 API SetCommState()函數(shù)進(jìn)行設(shè)置:
BOOL SetCommState( HANDLE hFile, //標(biāo)識通信端口的句柄 LPDCB lpDCB //指向一個(gè)設(shè)備控制塊(DCB結(jié)構(gòu))的指針 ); |
DCB結(jié)構(gòu)包含了串口的各項(xiàng)參數(shù)設(shè)置,如下:
typedef struct _DCB { // dcb DWORD DCBlength; // sizeof(DCB) DWORD BaudRate; // current baud rate DWORD fBinary: 1; // binary mode, no EOF check DWORD fParity: 1; // enable parity checking DWORD fOutxCtsFlow: 1; // CTS output flow control DWORD fOutxDsrFlow: 1; // DSR output flow control DWORD fDtrControl: 2; // DTR flow control type DWORD fDsrSensitivity: 1; // DSR sensitivity DWORD fTXContinueOnXoff: 1; // XOFF continues Tx DWORD fOutX: 1; // XON/XOFF out flow control DWORD fInX: 1; // XON/XOFF in flow control DWORD fErrorChar: 1; // enable error replacement DWORD fNull: 1; // enable null stripping DWORD fRtsControl: 2; // RTS flow control DWORD fAbortOnError: 1; // abort reads/writes on error DWORD fDummy2: 17; // reserved WORD wReserved; // not currently used WORD XonLim; // transmit XON threshold WORD XoffLim; // transmit XOFF threshold BYTE ByteSize; // number of bits/byte, 4-8 BYTE Parity; // 0-4=no,odd,even,mark,space BYTE StopBits; // 0,1,2 = 1, 1.5, 2 char XonChar; // Tx and Rx XON character char XoffChar; // Tx and Rx XOFF character char ErrorChar; // error replacement character char EofChar; // end of input character char EvtChar; // received event character WORD wReserved1; // reserved; do not use } DCB; |
讀寫串口
在讀寫串口之前,還要用PurgeComm()函數(shù)清空緩沖區(qū),并用SetCommMask ()函數(shù)設(shè)置事件掩模來監(jiān)視指定通信端口上的事件,其原型為:
BOOL SetCommMask( HANDLE hFile, //標(biāo)識通信端口的句柄 DWORD dwEvtMask //能夠使能的通信事件 ); |
串口上可能發(fā)生的事件如下表所示:
值 |
事件描述 |
EV_BREAK |
A break was detected on input. |
EV_CTS |
The CTS (clear-to-send) signal changed state. |
EV_DSR |
The DSR(data-set-ready) signal changed state. |
EV_ERR |
A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY. |
EV_RING |
A ring indicator was detected. |
EV_RLSD |
The RLSD (receive-line-signal-detect) signal changed state. |
EV_RXCHAR |
A character was received and placed in the input buffer. |
EV_RXFLAG |
The event character was received and placed in the input buffer. The event character is specified in the device‘s DCB structure, which is applied to a serial port by using the SetCommState function. |
EV_TXEMPTY |
The last character in the output buffer was sent. |
在設(shè)置好事件掩模后,我們就可以利用WaitCommEvent()函數(shù)來等待串口上發(fā)生事件,其函數(shù)原型為:
BOOL WaitCommEvent( HANDLE hFile, //標(biāo)識通信端口的句柄 LPDWORD lpEvtMask, //指向存放事件標(biāo)識變量的指針 LPOVERLAPPED lpOverlapped, // 指向overlapped結(jié)構(gòu) ); |
我們可以在發(fā)生事件后,根據(jù)相應(yīng)的事件類型,進(jìn)行串口的讀寫操作:
BOOL ReadFile(HANDLE hFile, //標(biāo)識通信端口的句柄 LPVOID lpBuffer, //輸入數(shù)據(jù)Buffer指針 DWORD nNumberOfBytesToRead, // 需要讀取的字節(jié)數(shù) LPDWORD lpNumberOfBytesRead, //實(shí)際讀取的字節(jié)數(shù)指針 LPOVERLAPPED lpOverlapped //指向overlapped結(jié)構(gòu) ); BOOL WriteFile(HANDLE hFile, //標(biāo)識通信端口的句柄 LPCVOID lpBuffer, //輸出數(shù)據(jù)Buffer指針 DWORD nNumberOfBytesToWrite, //需要寫的字節(jié)數(shù) LPDWORD lpNumberOfBytesWritten, //實(shí)際寫入的字節(jié)數(shù)指針 LPOVERLAPPED lpOverlapped //指向overlapped結(jié)構(gòu) );
|
2.工程實(shí)例
下面我們用第1節(jié)所述API實(shí)現(xiàn)一個(gè)多線程的串口通信程序。這個(gè)例子工程(工程名為MultiThreadCom)的界面很簡單,如下圖所示:
它是一個(gè)多線程的應(yīng)用程序,包括兩個(gè)工作者線程,分別處理串口1和串口2。為了簡化問題,我們讓連接兩個(gè)串口的電纜只包含RX、TX兩根連線(即不以硬件控制RS-232,串口上只會發(fā)生EV_TXEMPTY、EV_RXCHAR事件)。 在工程實(shí)例的BOOL CMultiThreadComApp::InitInstance()函數(shù)中,啟動(dòng)并設(shè)置COM1和COM2,其源代碼為:
BOOL CMultiThreadComApp::InitInstance() { AfxEnableControlContainer(); //打開并設(shè)置COM1 hComm1=CreateFile("COM1", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL); if (hComm1==(HANDLE)-1) { AfxMessageBox("打開COM1失敗"); return false; } else { DCB wdcb; GetCommState (hComm1,&wdcb); wdcb.BaudRate=9600; SetCommState (hComm1,&wdcb); PurgeComm(hComm1,PURGE_TXCLEAR); } //打開并設(shè)置COM2 hComm2=CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL); if (hComm2==(HANDLE)-1) { AfxMessageBox("打開COM2失敗"); return false; } else { DCB wdcb; GetCommState (hComm2,&wdcb); wdcb.BaudRate=9600; SetCommState (hComm2,&wdcb); PurgeComm(hComm2,PURGE_TXCLEAR); }
CMultiThreadComDlg dlg; m_pMainWnd = &dlg; int nResponse = dlg.DoModal(); if (nResponse == IDOK) { // TODO: Place code here to handle when the dialog is // dismissed with OK } else if (nResponse == IDCANCEL) { // TODO: Place code here to handle when the dialog is // dismissed with Cancel } return FALSE; } |
此后我們在對話框CMultiThreadComDlg的初始化函數(shù)OnInitDialog中啟動(dòng)兩個(gè)分別處理COM1和COM2的線程:
BOOL CMultiThreadComDlg::OnInitDialog() { CDialog::OnInitDialog(); // Add "About..." menu item to system menu.
// IDM_ABOUTBOX must be in the system command range. ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); ASSERT(IDM_ABOUTBOX < 0xF000);
CMenu* pSysMenu = GetSystemMenu(FALSE); if (pSysMenu != NULL) { CString strAboutMenu; strAboutMenu.LoadString(IDS_ABOUTBOX); if (!strAboutMenu.IsEmpty()) { pSysMenu->AppendMenu(MF_SEPARATOR); pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); } }
// Set the icon for this dialog. The framework does this automatically // when the application‘s main window is not a dialog SetIcon(m_hIcon, TRUE); // Set big icon SetIcon(m_hIcon, FALSE); // Set small icon
// TODO: Add extra initialization here //啟動(dòng)串口1處理線程 DWORD nThreadId1; hCommThread1 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0, (LPTHREAD_START_ROUTINE)Com1ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId1); if (hCommThread1 == NULL) { AfxMessageBox("創(chuàng)建串口1處理線程失敗"); return false; } //啟動(dòng)串口2處理線程 DWORD nThreadId2; hCommThread2 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0, (LPTHREAD_START_ROUTINE)Com2ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId2); if (hCommThread2 == NULL) { AfxMessageBox("創(chuàng)建串口2處理線程失敗"); return false; }
return TRUE; // return TRUE unless you set the focus to a control } |
兩個(gè)串口COM1和COM2對應(yīng)的線程處理函數(shù)等待串口上發(fā)生事件,并根據(jù)事件類型和自身緩沖區(qū)是否有數(shù)據(jù)要發(fā)送進(jìn)行相應(yīng)的處理,其源代碼為:
DWORD WINAPI Com1ThreadProcess(HWND hWnd//主窗口句柄) { DWORD wEven; char str[10]; //讀入數(shù)據(jù) SetCommMask(hComm1, EV_RXCHAR | EV_TXEMPTY); while (TRUE) { WaitCommEvent(hComm1, &wEven, NULL); if(wEven = 0) { CloseHandle(hCommThread1); hCommThread1 = NULL; ExitThread(0); } else { switch (wEven) { case EV_TXEMPTY: if (wTxPos < wTxLen) { //在串口1寫入數(shù)據(jù) DWORD wCount; //寫入的字節(jié)數(shù) WriteFile(hComm1, com1Data.TxBuf[wTxPos], 1, &wCount, NULL); com1Data.wTxPos++; } break; case EV_RXCHAR: if (com1Data.wRxPos < com1Data.wRxLen) { //讀取串口數(shù)據(jù), 處理收到的數(shù)據(jù) DWORD wCount; //讀取的字節(jié)數(shù) ReadFile(hComm1, com1Data.RxBuf[wRxPos], 1, &wCount, NULL); com1Data.wRxPos++; if(com1Data.wRxPos== com1Data.wRxLen); ::PostMessage(hWnd, COM_SENDCHAR, 0, 1); } break; } } } } return TRUE; }
DWORD WINAPI Com2ThreadProcess(HWND hWnd //主窗口句柄) { DWORD wEven; char str[10]; //讀入數(shù)據(jù) SetCommMask(hComm2, EV_RXCHAR | EV_TXEMPTY); while (TRUE) { WaitCommEvent(hComm2, &wEven, NULL); if (wEven = 0) { CloseHandle(hCommThread2); hCommThread2 = NULL; ExitThread(0); } else { switch (wEven) { case EV_TXEMPTY: if (wTxPos < wTxLen) { //在串口2寫入數(shù)據(jù) DWORD wCount; //寫入的字節(jié)數(shù) WriteFile(hComm2, com2Data.TxBuf[wTxPos], 1, &wCount, NULL); com2Data.wTxPos++; } break; case EV_RXCHAR: if (com2Data.wRxPos < com2Data.wRxLen) { //讀取串口數(shù)據(jù), 處理收到的數(shù)據(jù) DWORD wCount; //讀取的字節(jié)數(shù) ReadFile(hComm2, com2Data.RxBuf[wRxPos], 1, &wCount, NULL); com2Data.wRxPos++; if(com2Data.wRxPos== com2Data.wRxLen); ::PostMessage(hWnd, COM_SENDCHAR, 0, 1); } break; } } } return TRUE; } |
線程控制函數(shù)中所操作的com1Data和com2Data是與串口對應(yīng)的數(shù)據(jù)結(jié)構(gòu)struct tagSerialPort的實(shí)例,這個(gè)數(shù)據(jù)結(jié)構(gòu)是:
typedef struct tagSerialPort { BYTE RxBuf[SPRX_BUFLEN];//接收Buffer WORD wRxPos; //當(dāng)前接收字節(jié)位置 WORD wRxLen; //要接收的字節(jié)數(shù) BYTE TxBuf[SPTX_BUFLEN];//發(fā)送Buffer WORD wTxPos; //當(dāng)前發(fā)送字節(jié)位置 WORD wTxLen; //要發(fā)送的字節(jié)數(shù) }SerialPort, * LPSerialPort;
|
3.多線程串口類 使用多線程串口通信更方便的途徑是編寫一個(gè)多線程的串口類,例如Remon Spekreijse編寫了一個(gè)CSerialPort串口類。仔細(xì)分析這個(gè)類的源代碼,將十分有助于我們對先前所學(xué)多線程及同步知識的理解。 3.1類的定義
#ifndef __SERIALPORT_H__ #define __SERIALPORT_H__
#define WM_COMM_BREAK_DETECTED WM_USER+1 // A break was detected on input. #define WM_COMM_CTS_DETECTED WM_USER+2 // The CTS (clear-to-send) signal changed state. #define WM_COMM_DSR_DETECTED WM_USER+3 // The DSR (data-set-ready) signal changed state. #define WM_COMM_ERR_DETECTED WM_USER+4 // A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY. #define WM_COMM_RING_DETECTED WM_USER+5 // A ring indicator was detected. #define WM_COMM_RLSD_DETECTED WM_USER+6 // The RLSD (receive-line-signal-detect) signal changed state. #define WM_COMM_RXCHAR WM_USER+7 // A character was received and placed in the input buffer. #define WM_COMM_RXFLAG_DETECTED WM_USER+8 // The event character was received and placed in the input buffer. #define WM_COMM_TXEMPTY_DETECTED WM_USER+9 // The last character in the output buffer was sent.
class CSerialPort { public: // contruction and destruction CSerialPort(); virtual ~CSerialPort();
// port initialisation BOOL InitPort(CWnd* pPortOwner, UINT portnr = 1, UINT baud = 19200, char parity = ‘N‘, UINT databits = 8, UINT stopsbits = 1, DWORD dwCommEvents = EV_RXCHAR | EV_CTS, UINT nBufferSize = 512);
// start/stop comm watching BOOL StartMonitoring(); BOOL RestartMonitoring(); BOOL StopMonitoring();
DWORD GetWriteBufferSize(); DWORD GetCommEvents(); DCB GetDCB();
void WriteToPort(char* string);
protected: // protected memberfunctions void ProcessErrorMessage(char* ErrorText); static UINT CommThread(LPVOID pParam); static void ReceiveChar(CSerialPort* port, COMSTAT comstat); static void WriteChar(CSerialPort* port);
// thread CWinThread* m_Thread;
// synchronisation objects CRITICAL_SECTION m_csCommunicationSync; BOOL m_bThreadAlive;
// handles HANDLE m_hShutdownEvent; HANDLE m_hComm; HANDLE m_hWriteEvent;
// Event array. // One element is used for each event. There are two event handles for each port. // A Write event and a receive character event which is located in the overlapped structure (m_ov.hEvent). // There is a general shutdown when the port is closed. HANDLE m_hEventArray[3];
// structures OVERLAPPED m_ov; COMMTIMEOUTS m_CommTimeouts; DCB m_dcb;
// owner window CWnd* m_pOwner;
// misc UINT m_nPortNr; char* m_szWriteBuffer; DWORD m_dwCommEvents; DWORD m_nWriteBufferSize; };
#endif __SERIALPORT_H__ |
3.2類的實(shí)現(xiàn) 3.2.1構(gòu)造函數(shù)與析構(gòu)函數(shù) 進(jìn)行相關(guān)變量的賦初值及內(nèi)存恢復(fù):
CSerialPort::CSerialPort() { m_hComm = NULL;
// initialize overlapped structure members to zero m_ov.Offset = 0; m_ov.OffsetHigh = 0;
// create events m_ov.hEvent = NULL; m_hWriteEvent = NULL; m_hShutdownEvent = NULL;
m_szWriteBuffer = NULL;
m_bThreadAlive = FALSE; }
// // Delete dynamic memory // CSerialPort::~CSerialPort() { do { SetEvent(m_hShutdownEvent); } while (m_bThreadAlive);
TRACE("Thread ended\n");
delete []m_szWriteBuffer; } |
3.2.2核心函數(shù):初始化串口 在初始化串口函數(shù)中,將打開串口,設(shè)置相關(guān)參數(shù),并創(chuàng)建串口相關(guān)的用戶控制事件,初始化臨界區(qū)(Critical Section),以成隊(duì)的EnterCriticalSection()、LeaveCriticalSection()函數(shù)進(jìn)行資源的排它性訪問:
BOOL CSerialPort::InitPort(CWnd *pPortOwner, // the owner (CWnd) of the port (receives message) UINT portnr, // portnumber (1..4) UINT baud, // baudrate char parity, // parity UINT databits, // databits UINT stopbits, // stopbits DWORD dwCommEvents, // EV_RXCHAR, EV_CTS etc UINT writebuffersize) // size to the writebuffer { assert(portnr > 0 && portnr < 5); assert(pPortOwner != NULL);
// if the thread is alive: Kill if (m_bThreadAlive) { do { SetEvent(m_hShutdownEvent); } while (m_bThreadAlive); TRACE("Thread ended\n"); }
// create events if (m_ov.hEvent != NULL) ResetEvent(m_ov.hEvent); m_ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
if (m_hWriteEvent != NULL) ResetEvent(m_hWriteEvent); m_hWriteEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
if (m_hShutdownEvent != NULL) ResetEvent(m_hShutdownEvent); m_hShutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
// initialize the event objects m_hEventArray[0] = m_hShutdownEvent; // highest priority m_hEventArray[1] = m_ov.hEvent; m_hEventArray[2] = m_hWriteEvent;
// initialize critical section InitializeCriticalSection(&m_csCommunicationSync);
// set buffersize for writing and save the owner m_pOwner = pPortOwner;
if (m_szWriteBuffer != NULL) delete []m_szWriteBuffer; m_szWriteBuffer = new char[writebuffersize];
m_nPortNr = portnr;
m_nWriteBufferSize = writebuffersize; m_dwCommEvents = dwCommEvents;
BOOL bResult = FALSE; char *szPort = new char[50]; char *szBaud = new char[50];
// now it critical! EnterCriticalSection(&m_csCommunicationSync);
// if the port is already opened: close it if (m_hComm != NULL) { CloseHandle(m_hComm); m_hComm = NULL; }
// prepare port strings sprintf(szPort, "COM%d", portnr); sprintf(szBaud, "baud=%d parity=%c data=%d stop=%d", baud, parity, databits,stopbits);
// get a handle to the port m_hComm = CreateFile(szPort, // communication port string (COMX) GENERIC_READ | GENERIC_WRITE, // read/write types 0, // comm devices must be opened with exclusive access NULL, // no security attributes OPEN_EXISTING, // comm devices must use OPEN_EXISTING FILE_FLAG_OVERLAPPED, // Async I/O 0); // template must be 0 for comm devices
if (m_hComm == INVALID_HANDLE_VALUE) { // port not found delete []szPort; delete []szBaud; return FALSE; }
// set the timeout values m_CommTimeouts.ReadIntervalTimeout = 1000; m_CommTimeouts.ReadTotalTimeoutMultiplier = 1000; m_CommTimeouts.ReadTotalTimeoutConstant = 1000; m_CommTimeouts.WriteTotalTimeoutMultiplier = 1000; m_CommTimeouts.WriteTotalTimeoutConstant = 1000;
// configure if (SetCommTimeouts(m_hComm, &m_CommTimeouts)) { if (SetCommMask(m_hComm, dwCommEvents)) { if (GetCommState(m_hComm, &m_dcb)) { m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // set RTS bit high! if (BuildCommDCB(szBaud, &m_dcb)) { if (SetCommState(m_hComm, &m_dcb)) ; // normal operation... continue else ProcessErrorMessage("SetCommState()"); } else ProcessErrorMessage("BuildCommDCB()"); } else ProcessErrorMessage("GetCommState()"); } else ProcessErrorMessage("SetCommMask()"); } else ProcessErrorMessage("SetCommTimeouts()");
delete []szPort; delete []szBaud;
// flush the port PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
// release critical section LeaveCriticalSection(&m_csCommunicationSync);
TRACE("Initialisation for communicationport %d completed.\nUse Startmonitor to communicate.\n", portnr);
return TRUE; }
|
3.3.3核心函數(shù):串口線程控制函數(shù) 串口線程處理函數(shù)是整個(gè)類中最核心的部分,它主要完成兩類工作: ?。?)利用WaitCommEvent函數(shù)對串口上發(fā)生的事件進(jìn)行獲取并根據(jù)事件的不同類型進(jìn)行相應(yīng)的處理; ?。?)利用WaitForMultipleObjects函數(shù)對串口相關(guān)的用戶控制事件進(jìn)行等待并做相應(yīng)處理。
UINT CSerialPort::CommThread(LPVOID pParam) { // Cast the void pointer passed to the thread back to // a pointer of CSerialPort class CSerialPort *port = (CSerialPort*)pParam;
// Set the status variable in the dialog class to // TRUE to indicate the thread is running. port->m_bThreadAlive = TRUE;
// Misc. variables DWORD BytesTransfered = 0; DWORD Event = 0; DWORD CommEvent = 0; DWORD dwError = 0; COMSTAT comstat; BOOL bResult = TRUE;
// Clear comm buffers at startup if (port->m_hComm) // check if the port is opened PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
// begin forever loop. This loop will run as long as the thread is alive. for (;;) { // Make a call to WaitCommEvent(). This call will return immediatly // because our port was created as an async port (FILE_FLAG_OVERLAPPED // and an m_OverlappedStructerlapped structure specified). This call will cause the // m_OverlappedStructerlapped element m_OverlappedStruct.hEvent, which is part of the m_hEventArray to // be placed in a non-signeled state if there are no bytes available to be read, // or to a signeled state if there are bytes available. If this event handle // is set to the non-signeled state, it will be set to signeled when a // character arrives at the port.
// we do this for each port!
bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);
if (!bResult) { // If WaitCommEvent() returns FALSE, process the last error to determin // the reason.. switch (dwError = GetLastError()) { case ERROR_IO_PENDING: { // This is a normal return value if there are no bytes // to read at the port. // Do nothing and continue break; } case 87: { // Under Windows NT, this value is returned for some reason. // I have not investigated why, but it is also a valid reply // Also do nothing and continue. break; } default: { // All other error codes indicate a serious error has // occured. Process this error. port->ProcessErrorMessage("WaitCommEvent()"); break; } } } else { // If WaitCommEvent() returns TRUE, check to be sure there are // actually bytes in the buffer to read. // // If you are reading more than one byte at a time from the buffer // (which this program does not do) you will have the situation occur // where the first byte to arrive will cause the WaitForMultipleObjects() // function to stop waiting. The WaitForMultipleObjects() function // resets the event handle in m_OverlappedStruct.hEvent to the non-signelead state // as it returns. // // If in the time between the reset of this event and the call to // ReadFile() more bytes arrive, the m_OverlappedStruct.hEvent handle will be set again // to the signeled state. When the call to ReadFile() occurs, it will // read all of the bytes from the buffer, and the program will // loop back around to WaitCommEvent(). // // At this point you will be in the situation where m_OverlappedStruct.hEvent is set, // but there are no bytes available to read. If you proceed and call // ReadFile(), it will return immediatly due to the async port setup, but // GetOverlappedResults() will not return until the next character arrives. // // It is not desirable for the GetOverlappedResults() function to be in // this state. The thread shutdown event (event 0) and the WriteFile() // event (Event2) will not work if the thread is blocked by GetOverlappedResults(). // // The solution to this is to check the buffer with a call to ClearCommError(). // This call will reset the event handle, and if there are no bytes to read // we can loop back through WaitCommEvent() again, then proceed. // If there are really bytes to read, do nothing and proceed.
bResult = ClearCommError(port->m_hComm, &dwError, &comstat);
if (comstat.cbInQue == 0) continue; } // end if bResult
// Main wait function. This function will normally block the thread // until one of nine events occur that require action. Event = WaitForMultipleObjects(3, port->m_hEventArray, FALSE, INFINITE);
switch (Event) { case 0: { // Shutdown event. This is event zero so it will be // the higest priority and be serviced first.
port->m_bThreadAlive = FALSE;
// Kill this thread. break is not needed, but makes me feel better. AfxEndThread(100); break; } case 1: // read event { GetCommMask(port->m_hComm, &CommEvent); if (CommEvent &EV_CTS) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_CTS_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_RXFLAG) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RXFLAG_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_BREAK) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_BREAK_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_ERR) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_ERR_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_RING) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RING_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_RXCHAR) // Receive character event from port. ReceiveChar(port, comstat); break; } case 2: // write event { // Write character event from port WriteChar(port); break; } } // end switch } // close forever loop return 0; } |
下列三個(gè)函數(shù)用于對串口線程進(jìn)行啟動(dòng)、掛起和恢復(fù):
// // start comm watching // BOOL CSerialPort::StartMonitoring() { if (!(m_Thread = AfxBeginThread(CommThread, this))) return FALSE; TRACE("Thread started\n"); return TRUE; }
// // Restart the comm thread // BOOL CSerialPort::RestartMonitoring() { TRACE("Thread resumed\n"); m_Thread->ResumeThread(); return TRUE; }
// // Suspend the comm thread // BOOL CSerialPort::StopMonitoring() { TRACE("Thread suspended\n"); m_Thread->SuspendThread(); return TRUE; } |
3.3.4讀寫串口 下面一組函數(shù)是用戶對串口進(jìn)行讀寫操作的接口:
// // Write a character. // void CSerialPort::WriteChar(CSerialPort *port) { BOOL bWrite = TRUE; BOOL bResult = TRUE;
DWORD BytesSent = 0;
ResetEvent(port->m_hWriteEvent);
// Gain ownership of the critical section EnterCriticalSection(&port->m_csCommunicationSync);
if (bWrite) { // Initailize variables port->m_ov.Offset = 0; port->m_ov.OffsetHigh = 0;
// Clear buffer PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
bResult = WriteFile(port->m_hComm, // Handle to COMM Port port->m_szWriteBuffer, // Pointer to message buffer in calling finction strlen((char*)port->m_szWriteBuffer), // Length of message to send &BytesSent, // Where to store the number of bytes sent &port->m_ov); // Overlapped structure
// deal with any error codes if (!bResult) { DWORD dwError = GetLastError(); switch (dwError) { case ERROR_IO_PENDING: { // continue to GetOverlappedResults() BytesSent = 0; bWrite = FALSE; break; } default: { // all other error codes port->ProcessErrorMessage("WriteFile()"); } } } else { LeaveCriticalSection(&port->m_csCommunicationSync); } } // end if(bWrite)
if (!bWrite) { bWrite = TRUE;
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port &port->m_ov, // Overlapped structure &BytesSent, // Stores number of bytes sent TRUE); // Wait flag
LeaveCriticalSection(&port->m_csCommunicationSync);
// deal with the error code if (!bResult) { port->ProcessErrorMessage("GetOverlappedResults() in WriteFile()"); } } // end if (!bWrite)
// Verify that the data size send equals what we tried to send if (BytesSent != strlen((char*)port->m_szWriteBuffer)) { TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d\n", BytesSent, strlen((char*)port->m_szWriteBuffer)); } }
// // Character received. Inform the owner // void CSerialPort::ReceiveChar(CSerialPort *port, COMSTAT comstat) { BOOL bRead = TRUE; BOOL bResult = TRUE; DWORD dwError = 0; DWORD BytesRead = 0; unsigned char RXBuff;
for (;;) { // Gain ownership of the comm port critical section. // This process guarantees no other part of this program // is using the port object.
EnterCriticalSection(&port->m_csCommunicationSync);
// ClearCommError() will update the COMSTAT structure and // clear any other errors.
bResult = ClearCommError(port->m_hComm, &dwError, &comstat);
LeaveCriticalSection(&port->m_csCommunicationSync);
// start forever loop. I use this type of loop because I // do not know at runtime how many loops this will have to // run. My solution is to start a forever loop and to // break out of it when I have processed all of the // data available. Be careful with this approach and // be sure your loop will exit. // My reasons for this are not as clear in this sample // as it is in my production code, but I have found this // solutiion to be the most efficient way to do this.
if (comstat.cbInQue == 0) { // break out when all bytes have been read break; }
EnterCriticalSection(&port->m_csCommunicationSync);
if (bRead) { bResult = ReadFile(port->m_hComm, // Handle to COMM port &RXBuff, // RX Buffer Pointer 1, // Read one byte &BytesRead, // Stores number of bytes read &port->m_ov); // pointer to the m_ov structure // deal with the error code if (!bResult) { switch (dwError = GetLastError()) { case ERROR_IO_PENDING: { // asynchronous i/o is still in progress // Proceed on to GetOverlappedResults(); bRead = FALSE; break; } default: { // Another error has occured. Process this error. port->ProcessErrorMessage("ReadFile()"); break; } } } else { // ReadFile() returned complete. It is not necessary to call GetOverlappedResults() bRead = TRUE; } } // close if (bRead)
if (!bRead) { bRead = TRUE; bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port &port->m_ov, // Overlapped structure &BytesRead, // Stores number of bytes read TRUE); // Wait flag
// deal with the error code if (!bResult) { port->ProcessErrorMessage("GetOverlappedResults() in ReadFile()"); } } // close if (!bRead)
LeaveCriticalSection(&port->m_csCommunicationSync);
// notify parent that a byte was received ::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_RXCHAR, (WPARAM)RXBuff,(LPARAM)port->m_nPortNr); } // end forever loop
}
// // Write a string to the port // void CSerialPort::WriteToPort(char *string) { assert(m_hComm != 0);
memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer)); strcpy(m_szWriteBuffer, string);
// set event for write SetEvent(m_hWriteEvent); }
// // Return the output buffer size // DWORD CSerialPort::GetWriteBufferSize() { return m_nWriteBufferSize; } |
3.3.5控制接口 應(yīng)用程序員使用下列一組public函數(shù)可以獲取串口的DCB及串口上發(fā)生的事件:
// // Return the device control block // DCB CSerialPort::GetDCB() { return m_dcb; }
// // Return the communication event masks // DWORD CSerialPort::GetCommEvents() { return m_dwCommEvents; } |
3.3.6錯(cuò)誤處理
// // If there is a error, give the right message // void CSerialPort::ProcessErrorMessage(char *ErrorText) { char *Temp = new char[200];
LPVOID lpMsgBuf;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language (LPTSTR) &lpMsgBuf, 0, NULL);
sprintf(Temp, "WARNING: %s Failed with the following error: \n%s\nPort: %d\n", (char*) ErrorText, lpMsgBuf, m_nPortNr); MessageBox(NULL, Temp, "Application Error", MB_ICONSTOP);
LocalFree(lpMsgBuf); delete []Temp; } |
仔細(xì)分析Remon Spekreijse的CSerialPort類對我們理解多線程及其同步機(jī)制是大有益處的,從http://codeguru./network/serialport.shtml我們可以獲取CSerialPort類的介紹與工程實(shí)例。另外,電子工業(yè)出版社《Visual C++/Turbo C串口通信編程實(shí)踐》一書的作者龔建偉也編寫了一個(gè)使用CSerialPort類的例子,可以從http://www./scomm/sc2serialportclass.htm獲得詳情。 4.多線程網(wǎng)絡(luò)通信 在網(wǎng)絡(luò)通信中使用多線程主要有兩種途徑,即主監(jiān)控線程和線程池。 4.1主監(jiān)控線程 這種方式指的是程序中使用一個(gè)主線程監(jiān)控某特定端口,一旦在這個(gè)端口上發(fā)生連接請求,則主監(jiān)控線程動(dòng)態(tài)使用CreateThread派生出新的子線程處理該請求。主線程在派生子線程后不再對子線程加以控制和調(diào)度,而由子線程獨(dú)自和客戶方發(fā)生連接并處理異常。 使用這種方法的優(yōu)點(diǎn)是: ?。?)可以較快地實(shí)現(xiàn)原型設(shè)計(jì),尤其在用戶數(shù)目較少、連接保持時(shí)間較長時(shí)有表現(xiàn)較好; (2)主線程不與子線程發(fā)生通信,在一定程度上減少了系統(tǒng)資源的消耗。 其缺點(diǎn)是: ?。?)生成和終止子線程的開銷比較大; ?。?)對遠(yuǎn)端用戶的控制較弱。 這種多線程方式總的特點(diǎn)是"動(dòng)態(tài)生成,靜態(tài)調(diào)度"。 4.2線程池 這種方式指的是主線程在初始化時(shí)靜態(tài)地生成一定數(shù)量的懸掛子線程,放置于線程池中。隨后,主線程將對這些懸掛子線程進(jìn)行動(dòng)態(tài)調(diào)度。一旦客戶發(fā)出連接請求,主線程將從線程池中查找一個(gè)懸掛的子線程: ?。?)如果找到,主線程將該連接分配給這個(gè)被發(fā)現(xiàn)的子線程。子線程從主線程處接管該連接,并與用戶通信。當(dāng)連接結(jié)束時(shí),該子線程將自動(dòng)懸掛,并進(jìn)人線程池等待再次被調(diào)度; (2)如果當(dāng)前已沒有可用的子線程,主線程將通告發(fā)起連接的客戶。 使用這種方法進(jìn)行設(shè)計(jì)的優(yōu)點(diǎn)是: (1)主線程可以更好地對派生的子線程進(jìn)行控制和調(diào)度; ?。?)對遠(yuǎn)程用戶的監(jiān)控和管理能力較強(qiáng)。 雖然主線程對子線程的調(diào)度要消耗一定的資源,但是與主監(jiān)控線程方式中派生和終止線程所要耗費(fèi)的資源相比,要少很多。因此,使用該種方法設(shè)計(jì)和實(shí)現(xiàn)的系統(tǒng)在客戶端連接和終止變更頻繁時(shí)有上佳表現(xiàn)。 這種多線程方式總的特點(diǎn)是"靜態(tài)生成,動(dòng)態(tài)調(diào)度"。
|